Systemic lupus erythematosus development is influenced by both sex and the gut microbiota. Metabolite production is a major mechanism by which the gut microbiota influences the immune system, and we have previously found differences in the fecal metabolomic profiles of lupus-prone female and lupus-resistant male BWF1 mice. Here we determine how sex and microbiota metabolite production may interact to affect lupus.
View Article and Find Full Text PDFDecades of research into the topic of oral nanoparticle (NP) delivery has still not provided a clear consensus regarding which properties produce an effective oral drug delivery system. The surface properties-charge and bioadhesiveness-as well as in vitro and in vivo correlation seem to generate the greatest number of disagreements within the field. Herein, a mechanism underlying the in vivo behavior of NPs is proposed, which bridges the gaps between these disagreements.
View Article and Find Full Text PDFBackground: All-trans retinoic acid (ATRA) is a biologically active isomer of retinoic acid (RA). Topical ATRA (retin-a, retin-a micro, atralin, renova, and avita) is the active pharmaceutical ingredient for FDA-approved treatments for acne and skin wrinkles. Oral formulations (Vesanoid) treat acute promyelocytic leukemia, but oral dosing can induce severe side effects.
View Article and Find Full Text PDFWorld J Gastrointest Pharmacol Ther
November 2020
Colloids Surf B Biointerfaces
January 2019
The time-dependent bioadhesive performance of various polymers was evaluated using a texture analyzer apparatus and freshly excised rat small intestinal tissue. A series of novel bioadhesive polymers were prepared by conjugating L-phenylalanine, L-tyrosine, and L-DOPA to either a low molecular weight poly (butadiene-maleic anhydride) or a high molecular weight poly (ethylene-maleic anhydride). Bioadhesive force was characterized as a function of time relative to polycarbophil, a slightly cross-linked poly (acrylic acid)-derivative, revealing different fracture strengths and tensile work for each of the six backbone-side chain conjugations that were studied.
View Article and Find Full Text PDFA quick fabrication method for making double-walled (DW) polymeric nanospheres is presented. The process uses sequential precipitation of two polymers. By choosing an appropriate solvent and non-solvent polymer pair, and engineering two sequential phase inversions which induces first precipitation of the core polymer followed by precipitation of the shell polymer, DW nanospheres can be created instantaneously.
View Article and Find Full Text PDFSubstrate stiffness is known to alter cell behavior and drive stem cell differentiation, though most research in this area has been restricted to traditional, two-dimensional culture systems rather than more physiologically relevant, three-dimensional (3D) platforms. In this study, we utilized polymer-based, cell mimicking microparticles (CMMPs) to deliver distinct, stable mechanical cues to human adipose derived stem cells in 3D spheroid culture to examine changes in adipogenic differentiation response and mechanophenotype. After 21 days of adipogenic induction, spheroids containing CMMPs (composite spheroids) stiffened in accordance with CMMP elasticity such that spheroids containing the stiffest, ~ 10 kPa, CMMPs were over 27% stiffer than those incorporating the most compliant, ~ 0.
View Article and Find Full Text PDFStem and non-stem cell behavior is heavily influenced by the surrounding microenvironment, which includes other cells, matrix, and potentially biomaterials. Researchers have been successful in developing scaffolds and encapsulation techniques to provide stem cells with mechanical, topographical, and chemical cues to selectively direct them toward a desired differentiation pathway. However, most of these systems fail to present truly physiological replications of the in vivo microenvironments that stem cells are typically exposed to in tissues.
View Article and Find Full Text PDFInverse emulsification was used to fabricate polyacrylamide (PAAm) microbeads with size and elastic properties similar to typical, mammalian cells. These biomimicking microbeads could be fluorescently stained and functionalized with a collagen type-I coating, post-polymerization, for tracking bead locations and promoting cell recognition/binding, respectively. By occupying a previously unfilled range of sizes and mechanical properties, these microbeads may find unique use in both biomedical and materials applications.
View Article and Find Full Text PDFBackground And Aims: We investigated oral delivery of transforming growth factor beta 1 [TGFβ]- and all-trans retinoic acid [ATRA]-loaded microspheres as therapy for gut inflammation in murine models of inflammatory bowel disease [IBD].
Methods: ATRA and TGFβ were separately encapsulated in poly [lactic-co-glycolic] acid or polylactic acid microspheres [respectively]. TGFβ was encapsulated using proprietary phase-inversion nanoencapsulation [PIN] technology.
Immune dysregulation drives the pathogenesis of chronic inflammatory, autoimmune, and dysplastic disorders. While often intended to address localized pathology, most immune modulatory therapies are administered systemically and carry inherent risk of multiorgan toxicities. Here, we demonstrate, in a murine model of spontaneous gastrointestinal polyposis, that site-specific uptake of orally administered IL10 microparticles ameliorates local and systemic disease to enhance survival.
View Article and Find Full Text PDFPolymeric microspheres (MSs) have received attention for their potential to improve the delivery of drugs with poor oral bioavailability. Although MSs can be absorbed into the absorptive epithelium of the small intestine, little is known about the physiologic mechanisms that are responsible for their cellular trafficking. In these experiments, nonbiodegradable polystyrene MSs (diameter range: 500 nm to 5 µm) were delivered locally to the jejunum or ileum or by oral administration to young male rats.
View Article and Find Full Text PDFJ Control Release
September 2013
There has been increasing interest in developing bioadhesive nanoparticles due to their great potential as carriers for therapeutics in oral drug delivery systems. Despite decades of research, such a system still has not been successfully implemented. This paper demonstrates the enormous potential of such engineered systems: the incorporation of a bioadhesive coating, poly(butadiene-maleic anhydride-co-L-DOPA) (PBMAD), to non-bioadhesive nanospheres resulted in an enhancement of particle uptake in the small intestine from 5.
View Article and Find Full Text PDFSuccessful administration of therapeutic proteins via the oral route has long eluded the drug delivery community; a variety of factors, both physical and physiological, have hindered the myriad approaches to increasing the bioavailability of orally administered therapeutic proteins, including: 1) pre-systemic degradation by enzymes and 2) poor penetration of the intestinal mucosa and epithelium. Even when bypassing the harsh, acidic environment of the stomach, the intestines pose significant obstacles to systemic uptake. For example, the lining of the gastrointestinal tract comprises a thick wall of epithelial cells covered by a layer of polysaccharides and mucus.
View Article and Find Full Text PDFAlthough the linkage between germline mutations of BRCA1 and hereditary breast/ovarian cancers is well established, recent evidence suggests that altered expression of wild-type BRCA1 might contribute to the sporadic forms of breast cancer. The breast cancer gene trinucleotide-repeat-containing 9 (TNRC9; TOX3) has been associated with disease susceptibility but its function is undetermined. Here, we report that TNRC9 is often amplified and overexpressed in breast cancer, particularly in advanced breast cancer.
View Article and Find Full Text PDFThe one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.
View Article and Find Full Text PDFWet spun microfibers have great potential for the design of multifunctional controlled release scaffolds. Understanding aspects of drug delivery and mechanical strength, specific to protein molecular weight, may aid in the optimization and development of wet spun fiber platforms. This study investigated the intrinsic material properties and release kinetics of poly(l-lactic acid) (PLLA) and poly(lactic-co-glycolic acid) (PLGA) wet spun microfibers encapsulating proteins with varying molecular weights.
View Article and Find Full Text PDFWe have developed a novel wet extrusion process to fabricate nonwoven self-assembled microfiber scaffolds with uniform diameters less than 5 μm and without any postmanipulation. In this method, a poly(L-lactic acid) solution flows dropwise into a stirring nonsolvent bath, deforming into liquid polymer streams that self-assemble into a nonwoven microfiber scaffold. The ability to tune fiber diameter was achieved by decreasing polymer spin dope concentration and increasing the silicon oil to petroleum ether ratio of the nonsolvent spin bath.
View Article and Find Full Text PDFThe strength and stability of hybrid fiber delivery systems, ones that perform a mechanical function and simultaneously deliver drug, are critical in the design of surgically implantable constructs. We report the fabrication of drug-eluting microfibers where drug loading and processing conditions alone increase microfiber strength and stability partially due to solvent-induced crystallization. Poly(L-lactic acid) microfibers of 64±7 μm diameter were wet spun by phase inversion.
View Article and Find Full Text PDFWe report on the development of a modified solvent removal method for the encapsulation of hydrophilic drugs within poly(lactic-co-glycolic acid) (PLGA). Using a water/oil/oil double emulsion, hydrophilic doxycycline was encapsulated within PLGA spheres with particle diameters ranging from approximately 600 nm to 19 µm. Encapsulation efficiencies of up to 74% were achieved for theoretical loadings from 1% to 10% (w/w), with biphasic release over 85 days with nearly complete release at the end of this time course.
View Article and Find Full Text PDFFurosemide is a loop diuretic widely used by patients with congestive heart failure (CHF) to rid excess body water, reducing blood pressure, and mobilizing edemas. However, due to the narrow window of furosemide absorption, occurring only in the proximal gastrointestinal tract, only immediate release oral formulations are clinically available. Comparisons of bolus and continuous administration of furosemide in intravenous settings demonstrate that continuous administration at lower concentrations produced greater diuretic efficiency and reduced subsequent hospitalization rates in patients experiencing severe CHF.
View Article and Find Full Text PDFNumerous therapeutics demonstrate optimal absorption or activity at specific sites in the gastrointestinal (GI) tract. Yet, safe, effective pill retention within a desired region of the GI remains an elusive goal. We report a safe, effective method for localizing magnetic pills.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2010
Although other methods exist for monitoring gastrointestinal motility and contractility, this study exclusively provides direct and quantitative measurements of the forces experienced by an orally ingested pill. We report motive forces and torques calculated from real-time, in vivo measurements of the movement of a magnetic pill in the stomachs of fasted and fed humans. Three-dimensional net force and two-dimensional net torque vectors as a function of time data during gastric residence are evaluated using instantaneous translational and rotational position data.
View Article and Find Full Text PDFBioadhesive polymers have been used in oral drug delivery to prolong the contact of dosage forms with the site of drug absorption. Previous investigators have coated oral dosage forms in polymers that demonstrated bioadhesive properties during in vitro screens in efforts to prolong the gastric residence of drugs absorbed only in the stomach and proximal duodenum without clinical success. To further investigate the bioadhesive properties of the gastric environment, an in vivo quantitative bioadhesive fracture strength test was developed.
View Article and Find Full Text PDF