Publications by authors named "Mathilde Vermeer"

Desmoplakin (DSP) is a desmosomal component expressed in skin and heart, essential for desmosome stability and intermediate filament connection. Pathogenic variants in the DSP gene encoding DSP, lead to heterogeneous skin, adnexa and heart-related phenotypes, including skin fragility, woolly hair (WH), palmoplantar keratoderma (PPK) and arrhythmogenic/dilated cardiomyopathy (ACM/DCM). The ambiguity of computer-based prediction analysis of pathogenicity and effect of DSP variants, indicates a necessity for functional analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Desmosomes are important protein structures that help cells stick together, and their dysfunction can lead to skin and heart problems.
  • This study identifies TUFT1 as a protein associated with desmosomes, particularly involved in maintaining skin integrity, with a specific genetic mutation linked to skin issues in two siblings.
  • The research also demonstrates that lack of TUFT1 impacts skin cell structure and toughness, and a mouse model with TUFT1 removed displayed similar skin fragility and related symptoms.
View Article and Find Full Text PDF

Background: Doxorubicin is an essential cancer treatment, but its usefulness is hampered by the occurrence of cardiotoxicity. Nevertheless, the pathophysiology underlying doxorubicin-induced cardiotoxicity and the respective molecular mechanisms are poorly understood. Recent studies have suggested involvement of cellular senescence.

View Article and Find Full Text PDF

Genetic variants in gene-encoding proteins involved in cell−cell connecting structures, such as desmosomes and gap junctions, may cause a skin and/or cardiac phenotype, of which the combination is called cardiocutaneous syndrome. The cardiac phenotype is characterized by cardiomyopathy and/or arrhythmias, while the skin particularly displays phenotypes such as keratoderma, hair abnormalities and skin fragility. The reported variants associated with cardiocutaneous syndrome, in genes DSP, JUP, DSC2, KLHL24, GJA1, are classified by interpretation guidelines from the American College of Medical Genetics and Genomics.

View Article and Find Full Text PDF

This study shows that gain-of-function variants in KLHL24 causing EBS and DCM, do not only originate in the start-codon and suggest that any nonsense-inducing variant affecting nucleotides c.4_84 will likely cause the same effect on protein level and a similar potential lethal phenotype.

View Article and Find Full Text PDF

Desmoplakin (DP) is an important component of desmosomes, essential in cell-cell connecting structures in stress-bearing tissues. Over the years, many hundreds of pathogenic variants in DSP have been associated with different cutaneous and cardiac phenotypes or a combination, known as a cardiocutaneous syndrome. Of less than 5% of the reported DSP variants, the effect on the protein has been investigated.

View Article and Find Full Text PDF

The start codon c.1A>G mutation in KLHL24, encoding ubiquitin-ligase KLHL24, results in the loss of 28 N-terminal amino acids (KLHL24-ΔN28) by skipping the initial start codon. In skin, KLHL24-ΔN28 leads to gain of function, excessively targeting intermediate filament keratin-14 for proteasomal degradation, ultimately causing epidermolysis bullosa simplex (EBS).

View Article and Find Full Text PDF

The role that mechanical forces play in shaping the structure and function of the heart is critical to understanding heart formation and the etiology of disease but is challenging to study in patients. Engineered heart tissues (EHTs) incorporating human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes have the potential to provide insight into these adaptive and maladaptive changes. However, most EHT systems cannot model both preload (stretch during chamber filling) and afterload (pressure the heart must work against to eject blood).

View Article and Find Full Text PDF

Aims: Severe deficiency of the essential trace element selenium can cause myocardial dysfunction although the mechanism at cellular level is uncertain. Whether, in clinical practice, moderate selenium deficiency is associated with worse symptoms and outcome in patients with heart failure is unknown.

Methods And Results: BIOSTAT-CHF is a multinational, prospective, observational cohort study that enrolled patients with worsening heart failure.

View Article and Find Full Text PDF