Publications by authors named "Mathilde Soulez"

ERK3 and ERK4 define a distinct and understudied subfamily of mitogen-activated protein kinases (MAPKs). Little is known about the physiological roles of these atypical MAPKs and their association with human diseases. Interestingly, accumulating evidence points towards a role for ERK3 and ERK4 signaling in the initiation and progression of various types of cancer.

View Article and Find Full Text PDF

Extracellular signal-regulated kinase 3 (ERK3) is a poorly characterized member of the mitogen-activated protein (MAP) kinase family. Functional analysis of the ERK3 signaling pathway has been hampered by a lack of knowledge about the substrates and downstream effectors of the kinase. Here, we used large-scale quantitative phosphoproteomics and targeted gene silencing to identify direct ERK3 substrates and gain insight into its cellular functions.

View Article and Find Full Text PDF

The physiological functions of the atypical mitogen-activated protein kinase extracellular signal-regulated kinase 3 (ERK3) remain poorly characterized. Previous analysis of mice with a targeted insertion of the reporter in the locus ( ) showed that inactivation of ERK3 in mice leads to perinatal lethality associated with intrauterine growth restriction, defective lung maturation, and neuromuscular anomalies. To further explore the role of ERK3 in physiology and disease, we generated novel mouse models expressing a catalytically inactive ( ) or conditional ( ) allele of ERK3.

View Article and Find Full Text PDF

Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose regulatory mechanisms and biological functions remain superficially understood. Contrary to most protein kinases, ERK3 is a highly unstable protein that is subject to dynamic regulation by the ubiquitin-proteasome system. However, the effectors that control ERK3 ubiquitination and degradation are unknown.

View Article and Find Full Text PDF

Vascular remodelling is a critical vasculopathy found in atheromatous diseases and allograft failures. The local renin angiotensin system (RAS) has been implicated in vascular remodelling. However, the mechanisms by which the augmented local RAS is associated with the initial event of endothelial cell apoptosis in injured vasculature remain undefined.

View Article and Find Full Text PDF

Rationale: Endothelial apoptosis is increased in association with acute and chronic vascular rejection (VR) of solid allografts. Apoptotic endothelial cells (EC) release LG3, a C-terminal fragment of perlecan of potential importance in vascular remodeling and neointima formation.

Objective: Our 2 goals were to determine whether circulating levels of LG3 are increased in association with acute VR of renal allografts and to evaluate the impact of LG3 on vascular remodeling.

View Article and Find Full Text PDF

Mounting evidence indicates that mesenchymal stem cells (MSC) are pivotal to vascular repair and neointima formation in various forms of vascular disease. Yet, the mechanisms that allow MSC to resist apoptosis at sites where other cell types, such as endothelial cells (EC), are dying are not well defined. In the present work, we demonstrate that apoptotic EC actively release paracrine mediators which, in turn, inhibit apoptosis of MSC.

View Article and Find Full Text PDF

Endothelial cells (EC) under stress release paracrine mediators that facilitate accumulation of vascular smooth muscle cells (VSCM) at sites of vascular injury. We found that medium conditioned by serum-starved EC increase proliferation and migration of VSCM in vitro. Fractionation of the conditioned medium followed by mass spectral analysis identified one bioactive component as vitamin D-binding protein (DBP).

View Article and Find Full Text PDF