Human skin equivalents (HSEs) are a valuable tool for both academic and industrial laboratories to further the understanding of skin physiology and associated diseases. Over the last few decades, there have been many advances in the development of HSEs that successfully recapitulate the structure of human skin in vitro; however a main limitation is variability due to the use of complex protocols and exogenous extracellular matrix (ECM) proteins. We have developed a robust and unique full-thickness skin equivalent that is highly reproducible due to the use of a consistent scaffold, commercially available cells, and defined low-serum media.
View Article and Find Full Text PDFRecreating the structure of human tissues in the laboratory is valuable for fundamental research, testing interventions, and reducing the use of animals. Critical to the use of such technology is the ability to produce tissue models that accurately reproduce the microanatomy of the native tissue. Current artificial cell-based skin systems lack thorough characterisation, are not representative of human skin, and can show variation.
View Article and Find Full Text PDFThe skin is the largest organ of the integumentary system and possesses a vast number of functions. Due to the distinct layers of the skin and the variety of cells which populate each, a tightly regulated network of molecular signals control development and regeneration, whether due to programmed cell termination or injury. MicroRNAs (miRs) are a relatively recent discovery; they are a class of small non-coding RNAs which possess a multitude of biological functions due to their ability to regulate gene expression via post-transcriptional gene silencing.
View Article and Find Full Text PDFSystems modelling has been successfully used to investigate several key molecular mechanisms of ageing. Modelling frameworks to allow integration of models and methods to enhance confidence in models are now well established. In this article, we discuss these issues and work through the process of building an integrated model for cellular senescence as a single cell and in a simple tissue context.
View Article and Find Full Text PDFThe inability of neurites to grow and restore neural connections is common to many neurological disorders, including trauma to the central nervous system and neurodegenerative diseases. Therefore, there is need for a robust and reproducible model of neurite outgrowth, to provide a tool to study the molecular mechanisms that underpin the process of neurite inhibition and to screen molecules that may be able to overcome such inhibition. In this study a novel in vitro pluripotent stem cell based model of human neuritogenesis was developed.
View Article and Find Full Text PDFThe prognosis of patients with malignant glioma remains extremely poor despite surgery and improvements in radio- and chemo-therapies. We recently showed that marrow-isolated adult mutilineage inducible (MIAMI) cells, a subpopulation of human mesenchymal stromal cells (MSCs), can serve as cellular carriers of drug-loaded nanoparticles to brain tumors. However, the safety of MIAMI cells as cellular treatment vectors in glioma therapy must be evaluated, in particular their effect on glioma growth and their fate in a tumor environment.
View Article and Find Full Text PDFThe prognosis of patients with malignant glioma remains extremely poor despite surgery and improvements in radio- and chemo-therapies. Thus, treatment strategies that specifically target these tumors have the potential to greatly improve therapeutic outcomes. "Marrow-isolated adult multilineage inducible" cells (MIAMI cells) are a subpopulation of mesenchymal stromal cells (MSCs) which possess the ability to migrate to brain tumors.
View Article and Find Full Text PDFThe prognosis of patients with malignant glioma remains extremely poor, despite surgery and improvements in radio- and chemo-therapies. Nanotechnologies hold great promise in glioma therapy as they protect the therapeutic agent and allow its sustained release. However, new paradigms permitting tumor-specific targeting and extensive intratumoral distribution must be developed to efficiently deliver nanoparticles.
View Article and Find Full Text PDFThe prognosis of patients with malignant glioma remains extremely poor, despite surgery and improvements in radio- and chemo-therapies. Nanotechnologies represent great promise in glioma therapy as they protect therapeutic agent and allow its sustained release. However, new paradigms allowing tumor specific targeting and extensive intratumoral distribution must be developed to efficiently deliver nanoparticles (NPs).
View Article and Find Full Text PDF