Publications by authors named "Mathilde Lorscheider"

Targeted delivery of dexamethasone to inflamed tissues using nanoparticles is much-needed to improve its efficacy while reducing side effects. To drastically improve dexamethasone loading and prevent burst release once injected intravenously, a lipophilic prodrug dexamethasone palmitate (DXP) was encapsulated into poly(DL-lactide-co-glycolide)-polyethylene glycol (PLGA-PEG) nanoparticles (NPs). DXP-loaded PLGA-PEG NPs (DXP-NPs) of about 150 nm with a drug loading as high as 7.

View Article and Find Full Text PDF

Global cancer prevalence has continuously increased in the last decades despite substantial progress achieved for patient care. Cancer is no longer recognized as a singular disease but as a plurality of different ones, leading to the important choice of the drug administration route and promoting the development of novel drug-delivery systems (DDS). Due to their structural diversity, therapeutic cancer drugs present specific challenges in physicochemical properties that can adversely affect their efficacy and toxicity profile.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects 0.5-1% of the world population. Current treatments include on one hand non-steroidal anti-inflammatory drugs and glucocorticoids (GCs) for treating pain and on the other hand disease-modifying anti-rheumatic drugs such as methotrexate, Janus kinase inhibitors or biologics such as antibodies targeting mainly cytokine expression.

View Article and Find Full Text PDF

The encapsulation of glucocorticoids, such as dexamethasone, in nanoparticles (NPs) faces two main issues: a low drug loading and the destabilization of the nanoparticle suspension due to drug crystallization. Here, we successfully formulated a prodrug of dexamethasone, dexamethasone palmitate (DXP), into nanoparticles stabilized by the sole presence of distearoyl- sn-glycero-3-phosphoethanolamine- N-[methoxy(poly(ethylene glycol))-2000] (DSPE-PEG). Two formulation processes, nanoprecipitation and emulsion-evaporation, allowed the formation of stable nanoparticles.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by joint inflammation, bone and cartilage erosion. The use of glucocorticoids in the treatment of RA is hampered by significant side effects induced by their unfavorable pharmacokinetics. Delivering glucocorticoids by means of nanotechnologies is promising but the encapsulation of highly crystalline and poorly water-soluble drugs results in poor loading and low stability.

View Article and Find Full Text PDF