The insect repellent IR3535 is one of the important alternative in the fight against mosquito-borne disease such as malaria, dengue, chikungunya, yellow fever and Zika. Using a multidisciplinary approach, we propose the development of an innovative insecticide-based vector control strategy using an unexplored property of IR3535. We have demonstrated that in insect neurosecretory cells, very low concentration of IR3535 induces intracellular calcium rise through cellular mechanisms involving orthosteric/allosteric sites of the M1-muscarinic receptor subtype, G protein βγ subunits, background potassium channel inhibition generating depolarization, which induces voltage-gated calcium channel activation.
View Article and Find Full Text PDFInsect vector-borne diseases remain one of the principal causes of human mortality. In addition to conventional measures of insect control, repellents continue to be the mainstay for personal protection. Because of the increasing pyrethroid-resistant mosquito populations, alternative strategies to reconstitute pyrethroid repellency and knock-down effects have been proposed by mixing the repellent DEET (N,N-Diethyl-3-methylbenzamide) with non-pyrethroid insecticide to better control resistant insect vector-borne diseases.
View Article and Find Full Text PDF