Accurately quantifying cellular morphology at scale could substantially empower existing single-cell approaches. However, measuring cell morphology remains an active field of research, which has inspired multiple computer vision algorithms over the years. Here, we show that DINO, a vision-transformer based, self-supervised algorithm, has a remarkable ability for learning rich representations of cellular morphology without manual annotations or any other type of supervision.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
April 2023
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet.
View Article and Find Full Text PDF