Publications by authors named "Mathilde Broekhuis"

Objective: Cancer cells use glycolysis for generation of metabolic intermediates and ATP needed for cell growth and proliferation. The transcription factor C/EBPβ-LIP stimulates glycolysis and mitochondrial respiration in cancer cells. We initially observed that high expression of C/EBPβ-LIP makes cells vulnerable to treatment with the glycolysis inhibitor 2-deoxyglucose.

View Article and Find Full Text PDF

The transcription factor C/EBPβ is a master regulator of mammary gland development and tissue remodelling during lactation. The CEBPB-mRNA is translated into three distinct protein isoforms named C/EBPβ-LAP1, -LAP2 and -LIP that are functionally different. The smaller isoform LIP lacks the N-terminal transactivation domains and is considered to act as an inhibitor of the transactivating LAP1/2 isoforms by competitive binding for the same DNA recognition sequences.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied a type of brain tumor in kids called high-grade glioma that has a special gene mutation in a protein called H3.3.
  • They found that this mutation might be causing problems with how DNA is copied during cell division, making it unstable.
  • By using lab experiments, they showed that when this mutation is present, it leads to more mistakes in DNA copying, which could help the tumor grow.
View Article and Find Full Text PDF

Expansion of hematopoietic stem cells (HSCs) is a 'holy grail' of regenerative medicine, as successful stem cell transplantations depend on the number and quality of infused HSCs. Although many attempts have been pursued to either chemically or genetically increase HSC numbers, neither clonal analysis of these expanded cells nor their ability to support mature blood lineages has been demonstrated. Here we show that miR-125a, at the single cell level, can expand murine long-term repopulating HSCs.

View Article and Find Full Text PDF

Umbilical cord blood (CB) is a convenient and broadly used source of hematopoietic stem cells (HSCs) for allogeneic stem cell transplantation. However, limiting numbers of HSCs remain a major constraint for its clinical application. Although one feasible option would be to expand HSCs to improve therapeutic outcome, available protocols and the molecular mechanisms governing the self-renewal of HSCs are unclear.

View Article and Find Full Text PDF

Accurate monitoring of tumor dynamics and leukemic stem cell (LSC) heterogeneity is important for the development of personalized cancer therapies. In this study, we experimentally induced distinct types of leukemia in mice by enforced expression of Cbx7. Simultaneous cellular barcoding allowed for thorough analysis of leukemias at the clonal level and revealed high and unpredictable tumor complexity.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are crucial for proper functioning of hematopoietic stem and progenitor cells (HSPCs). Members of the miRNA-125 family (consisting of miR-125a, miR-125b1, and miR-125b2) are known to confer a proliferative advantage on cells upon overexpression, to decrease the rate of apoptosis by targeting proapoptotic genes, and to promote differentiation toward the myeloid lineage in mice. However, many distinct biological effects of the three miR-125 species have been reported as well.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) are able to migrate through the blood stream and engraft bone marrow (BM) niches. These features are key factors for successful stem cell transplantations that are used in cancer patients and in gene therapy protocols. It is unknown to what extent transplanted HSCs distribute throughout different anatomical niches in the BM and whether this changes with age.

View Article and Find Full Text PDF

The number of hematopoietic stem cells (HSCs) that contributes to blood formation and the dynamics of their clonal contribution is a matter of ongoing discussion. Here, we use cellular barcoding combined with multiplex high-throughput sequencing to provide a quantitative and sensitive analysis of clonal behavior of hundreds of young and old HSCs. The majority of transplanted clones steadily contributes to hematopoiesis in the long-term, although clonal output in granulocytes, T cells, and B cells is substantially different.

View Article and Find Full Text PDF

The balance between self-renewal and differentiation of adult stem cells is essential for tissue homeostasis. Here we show that in the haematopoietic system this process is governed by polycomb chromobox (Cbx) proteins. Cbx7 is specifically expressed in haematopoietic stem cells (HSCs), and its overexpression enhances self-renewal and induces leukaemia.

View Article and Find Full Text PDF

The number of stem cells contributing to hematopoiesis has been a matter of debate. Many studies use retroviral tagging of stem cells to measure clonal contribution. Here we argue that methodological factors can impact such clonal analyses.

View Article and Find Full Text PDF

Clonal analysis is important for many areas of hematopoietic stem cell research, including in vitro cell expansion, gene therapy, and cancer progression and treatment. A common approach to measure clonality of retrovirally transduced cells is to perform integration site analysis using Southern blotting or polymerase chain reaction-based methods. Although these methods are useful in principle, they generally provide a low-resolution, biased, and incomplete assessment of clonality.

View Article and Find Full Text PDF

Treatment failure in pediatric acute lymphoblastic leukemia (ALL) is related to cellular resistance to glucocorticoids (eg, prednisolone). Recently, we demonstrated that genes associated with glucose metabolism are differentially expressed between prednisolone-sensitive and prednisolone-resistant precursor B-lineage leukemic patients. Here, we show that prednisolone resistance is associated with increased glucose consumption and that inhibition of glycolysis sensitizes prednisolone-resistant ALL cell lines to glucocorticoids.

View Article and Find Full Text PDF

Glucocorticoid (GC) resistance is an adverse prognostic factor in childhood acute lymphoblastic leukemia (ALL), but little is known about causes of GC resistance. Up-regulation of the glucocorticoid receptor (GR) has been suggested as an essential step to the induction of apoptosis in leukemic cells. In this study we investigated whether baseline mRNA expression levels of the 5 different GR promoter transcripts (1A1, 1A2, 1A3, 1B, and 1C) or differences in the degree of regulation of the GR or GR promoter transcripts upon GC exposure are related to GC resistance.

View Article and Find Full Text PDF