Publications by authors named "Mathilde Allard"

Background: Glioblastoma (GB), the most aggressive brain cancer, remains a critical clinical challenge due to its resistance to conventional treatments. Here, we introduce a locoregional targeted-α-therapy (TAT) with the rat monoclonal antibody 9E7.4 targeting murine syndecan-1 (SDC1) coupled to the α-emitter radionuclide astatine-211 (At-9E7.

View Article and Find Full Text PDF

Introduction: The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the MHC (pMHC) on cells is an essential parameter for efficient T cell-mediated immunity. Yet, whether the TCR-ligand avidity can drive the clonal evolution of virus antigen-specific CD8 T cells, and how this process is determined in latent Cytomegalovirus (CMV)- against Epstein-Barr virus (EBV)-mediated infection remains largely unknown.

Methods: To address these issues, we quantified monomeric TCR-pMHC dissociation rates on CMV- and EBV-specific individual TCRαβ clonotypes and polyclonal CD8 T cell populations in healthy donors over a follow-up time of 15-18 years.

View Article and Find Full Text PDF

Background: Polyploid giant cancer cells (PGCCs) have been observed in epithelial ovarian tumors. They can resist antimitotic drugs, thus participating in tumor maintenance and recurrence. Although their origin remains unclear, PGCC formation seems to be enhanced by conditions that trigger the unfolded protein response (UPR) such as hypoxia or chemotherapeutic drugs like paclitaxel.

View Article and Find Full Text PDF

Purpose: The tumor microenvironment (TME) can severely impair immunotherapy efficacy by repressing the immune system. In a multiple myeloma (MM) murine model, we investigated the impact of targeted alpha particle therapy (TAT) on the immune TME. TAT was combined with an adoptive cell transfer of CD8 T cells (ACT), and the mechanisms of action of this combination were assessed at the tumor site.

View Article and Find Full Text PDF

Recently, we involved the carbohydrate-binding protein Galectin-3 (Gal-3) as a druggable target for KRAS-mutant-addicted lung and pancreatic cancers. Here, using glioblastoma patient-derived stem cells (GSCs), we identify and characterize a subset of Gal-3 glioblastoma (GBM) tumors mainly within the mesenchymal subtype that are addicted to Gal-3-mediated macropinocytosis. Using both genetic and pharmacologic inhibition of Gal-3, we showed a significant decrease of GSC macropinocytosis activity, cell survival and invasion, in vitro and in vivo.

View Article and Find Full Text PDF

Glioma represents a serious health burden in terms of morbidity and mortality. The prognostic significance of the lymphoid and myeloid infiltrates in glioma is not clearly determined. Moreover, the characterization of different leukocyte subsets in the tumor microenvironment relies mainly on immunohistochemistry observations, and data about their association with prognosis are contradictory.

View Article and Find Full Text PDF
Article Synopsis
  • Peripheral CD4CD8 double positive T cells show diverse characteristics based on their origin and the surrounding disease context, particularly in melanoma.
  • Researchers previously identified a specific tumor-reactive subpopulation within these T cells that exhibit CD4-like functions, prompting deeper investigation.
  • A detailed transcriptomic analysis revealed that intra-melanoma DP T cells have gene expression patterns more similar to CD8 single positive T cells but are shifting towards a helper-like role, indicating that they may originate from CD8 T cells being reprogrammed for a different function.
View Article and Find Full Text PDF

It is known that for achieving high affinity antibody responses, vaccines must be optimized for antigen dose/density, and the prime/boost interval should be at least 4 weeks. Similar knowledge is lacking for generating high avidity T-cell responses. The functional avidity (FA) of T cells, describing responsiveness to peptide, is associated with the quality of effector function and the protective capacity in vivo.

View Article and Find Full Text PDF

Cancer vaccines based on synthetic peptides are a safe, well-tolerated immunotherapy able to specifically stimulate tumor-reactive T cells. However, their clinical efficacy does not approach that achieved with other immunotherapies such as immune checkpoint blockade. Nevertheless, major advances have been made in selecting tumor antigens to target, identifying epitopes binding to classical and non-classical HLA molecules, and incorporating these into optimal sized peptides for formulation into a vaccine.

View Article and Find Full Text PDF

Background: Peptide vaccines offer the opportunity to elicit glioma-specific T cells with tumor killing ability. Using antigens eluted from the surface of glioblastoma samples, we designed a phase I/II study to test safety and immunogenicity of the IMA950 multipeptide vaccine adjuvanted with poly-ICLC (polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose) in human leukocyte antigen A2+ glioma patients.

Methods: Adult patients with newly diagnosed glioblastoma (n = 16) and grade III astrocytoma (n = 3) were treated with radiochemotherapy followed by IMA950/poly-ICLC vaccination.

View Article and Find Full Text PDF

Immune response against human cytomegalovirus (HCMV) includes a set of persistent cytotoxic NK and CD8 T cells devoted to eliminate infected cells and to prevent reactivation. CD8 T cells against HCMV antigens (pp65, IE1) presented by HLA class-I molecules are well characterized and they associate with efficient virus control. HLA-E-restricted CD8 T cells targeting HCMV UL40 signal peptides (HLA-EUL40) have recently emerged as a non-conventional T-cell response also observed in some hosts.

View Article and Find Full Text PDF

Redirecting CD8 T cell immunity with self/tumor-specific affinity-matured T cell receptors (TCRs) is a promising approach for clinical adoptive T cell therapy, with the aim to improve treatment efficacy. Despite numerous functional-based studies, little is known about the characteristics of TCR signaling (i.e.

View Article and Find Full Text PDF

Despite influencing many aspects of T cell biology, the kinetics of T cell receptor (TCR) binding to peptide-major histocompatibility molecules (pMHC) remain infrequently determined in patient monitoring or for adoptive T cell therapy. Using specifically designed reversible fluorescent pMHC multimeric complexes, we performed a comprehensive study of TCR-pMHC off-rates combined with various functional assays on large libraries of self/tumor- and virus-specific CD8+ T cell clones from melanoma patients and healthy donors. We demonstrate that monomeric TCR-pMHC dissociation rates accurately predict the extent of cytotoxicity, cytokine production, polyfunctionality, cell proliferation, activating/inhibitory receptor expression, and in vivo antitumor potency of naturally occurring antigen-specific CD8+ T cells.

View Article and Find Full Text PDF

The potency of cellular immune responses strongly depends on T cell avidity to antigen. Yet, functional avidity measurements are rarely performed in patients, mainly due to the technical challenges of characterizing heterogeneous T cells. The mean functional T cell avidity can be determined by the IFN-γ Elispot assay, with titrated amounts of peptide.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers observed a unique group of tumor-fighting CD4(+) CD8(+) double positive (DP) T cells in melanoma tumors, hinting at their importance in anti-cancer immune responses.
  • *DP T cells, which have a different killing ability compared to CD8(+) T cells, showed higher levels of the IL-9 receptor (IL-9R), leading to further investigation on how IL-9 affects their function.
  • *Findings indicate that IL-9 promotes the survival and proliferation of DP T cells, boosts their cytokine production, and enhances their ability to attack melanoma cells, suggesting that targeting IL-9 could improve anti-tumor immunity.*
View Article and Find Full Text PDF

Cytotoxic T cells recognize, via their T cell receptors (TCRs), small antigenic peptides presented by the major histocompatibility complex (pMHC) on the surface of professional antigen-presenting cells and infected or malignant cells. The efficiency of T cell triggering critically depends on TCR binding to cognate pMHC, i.e.

View Article and Find Full Text PDF

Experimental models demonstrated that therapeutic induction of CD8 T cell responses may offer protection against tumors or infectious diseases providing that T cells have sufficiently high TCR/CD8:pMHC avidity for efficient Ag recognition and consequently strong immune functions. However, comprehensive characterization of TCR/CD8:pMHC avidity in clinically relevant situations has remained elusive. In this study, using the novel NTA-His tag-containing multimer technology, we quantified the TCR:pMHC dissociation rates (koff) of tumor-specific vaccine-induced CD8 T cell clones (n = 139) derived from seven melanoma patients vaccinated with IFA, CpG, and the native/EAA or analog/ELA Melan-A(MART-1)(26-35) peptide, binding with low or high affinity to MHC, respectively.

View Article and Find Full Text PDF

Efficient and persisting immune memory is essential for long-term protection from infectious and malignant diseases. The yellow fever (YF) vaccine is a live attenuated virus that mediates lifelong protection, with recent studies showing that the CD8(+) T cell response is particularly robust. Yet, limited data exist regarding the long-term CD8(+) T cell response, with no studies beyond 5 years after vaccination.

View Article and Find Full Text PDF

Accumulating evidence that serum levels of soluble class I HLA molecules (sHLA-I) can, under various pathological conditions, correlate with disease stage and/or patient survival, has stimulated interest in defining whether sHLA-I can exert immunological functions. However, despite a mounting number of publications suggesting the ability of sHLA-I to affect immune effectors in vitro, the precise underlying mechanism still remains controversial. In this article, we address potential functions of both classical and nonclassical sHLA-I, using soluble recombinant HLA-I/peptide monomers, and clearly demonstrate their ability to trigger Ag-specific activation of CD8 T cells in vitro.

View Article and Find Full Text PDF

Although association between CMV infection and allograft rejection is well admitted, the precise mechanisms involved remain uncertain. Here, we report the characterization of an alloreactive HLA-E-restricted CD8 T cell population that was detected in the PBL of a kidney transplant patient after its CMV conversion. This monoclonal CD8 T cell population represents a sizable fraction in the blood (3% of PBL) and is characterized by an effector-memory phenotype and the expression of multiple NK receptors.

View Article and Find Full Text PDF

Background: Tumor-derived soluble factors, including soluble HLA molecules, can contribute to cancer immune escape and therefore impact on clinical course of malignant diseases. We previously reported that melanoma cells produce, in vitro, soluble forms of the non-classical MHC class I molecule HLA-E (sHLA-E). In order to investigate sHLA-E production by various tumors and to address its potential value as a tumor-associated marker, we developed a specific ELISA for the quantification of sHLA-E in biological fluids.

View Article and Find Full Text PDF

Purpose: Immunotherapy is an alternative for metastatic melanoma patients resistant to chemotherapy. Natural killer (NK) cells are powerful antileukemia effectors and their role in solid tumors is suspected. NK cell activation is regulated by a balance between activating receptors, which detect stress molecules on tumor cells, and HLA-I specific inhibitory receptors.

View Article and Find Full Text PDF