Over the last two decades, proliferations of benthic cyanobacteria producing derivatives of anatoxin-a have been reported in rivers worldwide. Here, we follow up on such a toxigenic event happening in the Areuse river in Switzerland and investigate the diversity and genomics of major bloom-forming riverine benthic cyanobacteria. We show, using 16S rRNA-based community profiling, that benthic communities are dominated by Oscillatoriales.
View Article and Find Full Text PDFIn this study, we investigated the temporal and spatial quantitative changes in the concentration of antibiotic resistance gene (ARG) markers in a municipal wastewater treatment plant (WWTP). Four ARGs conferring resistance to different classes of antibiotics (ermB, sul1, tet[W], and bla) and a gene used as a proxy for ARG pollution (intl1) were quantified in two separate sampling campaigns covering two and half years of operation of the WWTP. First, a systematic monthly monitoring of multiple points in the inlet and the outlet revealed an absolute decrease in the concentration of all analyzed ARGs.
View Article and Find Full Text PDFBacteriophages play a crucial role in shaping bacterial communities, yet the mechanisms by which nonmotile bacteriophages interact with their hosts remain poorly understood. This knowledge gap is especially pronounced in structured environments like soil, where spatial constraints and air-filled zones hinder aqueous diffusion. In soil, hyphae of filamentous microorganisms form a network of 'fungal highways' (FHs) that facilitate the dispersal of other microorganisms.
View Article and Find Full Text PDFThe production of specialized resting cells is a remarkable strategy developed by several organisms to survive unfavorable environmental conditions. Spores are specialized resting cells that are characterized by low to absent metabolic activity and higher resistance. Spore-like cells are known from multiple groups of bacteria, which can form spores under suboptimal growth conditions (e.
View Article and Find Full Text PDFBacteria swim and swarm by rotating the micrometers long, helical filaments of their flagella. They change direction by reversing their flagellar rotation, which switches the handedness of the filament's supercoil. So far, all studied functional filaments are composed of a mixture of L- and R-state flagellin monomers.
View Article and Find Full Text PDF