Nat Rev Gastroenterol Hepatol
September 2024
According to conventional views, colon cancer originates from stem cells. However, inflammation, a key risk factor for colon cancer, has been shown to suppress intestinal stemness. Here, we used Paneth cells as a model to assess the capacity of differentiated lineages to trigger tumorigenesis in the context of inflammation in mice.
View Article and Find Full Text PDFDense and aligned Collagen I fibers are associated with collective cancer invasion led by protrusive tumor cells, leader cells. In some breast tumors, a population of cancer cells (basal-like cells) maintain several epithelial characteristics and express the myoepithelial/basal cell marker Keratin 14 (K14). Emergence of leader cells and K14 expression are regarded as interconnected events triggered by Collagen I, however the underlying mechanisms remain unknown.
View Article and Find Full Text PDFPhenotypic plasticity, defined as the ability of individual cells with stable genotypes to exert different phenotypes upon exposure to specific environmental cues, represent the quintessential hallmark of the cancer cell en route from the primary lesion to distant organ sites where metastatic colonization will occur. Phenotypic plasticity is driven by a broad spectrum of epigenetic mechanisms that allow for the reversibility of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions (EMT/MET). By taking advantage of the co-existence of epithelial and quasi-mesenchymal cells within immortalized cancer cell lines, we have analyzed the role of EMT-related gene isoforms in the regulation of epithelial mesenchymal plasticity (EMP) in high grade serous ovarian cancer.
View Article and Find Full Text PDFAccording to conventional views, colon cancer originates from stem cells. However, inflammation, a key risk factor for colon cancer, was shown to suppress intestinal stemness. Here, we employed Paneth cells (PCs) as a model to assess the capacity of differentiated lineages to trigger tumorigenesis in the context of inflammation.
View Article and Find Full Text PDFBackground: Poor prognosis in colon cancer is associated with a high content of cancer-associated fibroblasts (CAFs) and an immunosuppressive tumor microenvironment. The relationship between these two features is incompletely understood. Here, we aimed to generate a model system for studying the interaction between cancer cells and CAFs and their effect on immune-related cytokines and T cell proliferation.
View Article and Find Full Text PDFCyclin-dependent kinase 2-associated protein 1 (CDK2AP1; also known as deleted in oral cancer or DOC1) is a tumor suppressor gene known to play functional roles in both cell cycle regulation and in the epigenetic control of embryonic stem cell differentiation, the latter as a core subunit of the nucleosome remodeling and histone deacetylation (NuRD) complex. In the vast majority of oral squamous cell carcinomas (OSCC), expression of the CDK2AP1 protein is reduced or lost. Notwithstanding the latter (and the DOC1 acronym), mutations or deletions in its coding sequence are extremely rare.
View Article and Find Full Text PDFPaneth cells (PCs), responsible for the secretion of antimicrobial peptides in the small intestine and for niche support to crypt-base columnar stem cells (CBCs), have been shown to respond to inflammation by dedifferentiating into stem-like cells in order to sustain a regenerative response. Therefore, PCs may represent the cells-of-origin of intestinal cancer in the context of inflammation. To test this hypothesis, we targeted and mutations in Paneth cells by Cre-Lox technology and modelled inflammation by dextran sodium sulfate (DSS) administration.
View Article and Find Full Text PDF