Publications by authors named "Mathieu Renouf"

Using a discrete element method, we investigate the phenomenon of geometric cohesion in granular systems composed of star-shaped particles with 3 to 13 arms. This was done by analyzing the stability of columns built with these particles and by studying the microstructure of these columns in terms of density and connectivity. We find that systems composed of star-shaped particles can exhibit geometric cohesion (i.

View Article and Find Full Text PDF

By means of two-dimensional numerical simulations based on contact dynamics, we present a systematic analysis of the joint effects of grain shape (i.e., grain elongation) and system size on silo discharge for increasing orifice sizes D.

View Article and Find Full Text PDF

Very soft grain assemblies have unique shape-changing capabilities that allow them to be compressed far beyond the rigid jammed state by filling void spaces more effectively. However, accurately following the formation of these systems by monitoring the creation of new contacts, monitoring the changes in grain shape, and measuring grain-scale stresses is challenging. We developed an experimental method that overcomes these challenges and connects their microscale behavior to their macroscopic response.

View Article and Find Full Text PDF

Granular materials are used in several fields and in a wide variety of processes. An important feature of these materials is the diversity of grain sizes, commonly referred to as polydispersity. When granular materials are sheared, they exhibit a predominant small elastic range.

View Article and Find Full Text PDF

In this Letter, we report on an experimental study which analyzes the compressive behavior of two-dimensional bidisperse granular assemblies made of soft (hyperelastic) and hard grains in varying proportions (κ is the portion of soft grains). By means of a recently developed uniaxial compression setup [Vu and Barés, Phys. Rev.

View Article and Find Full Text PDF

This paper analyzes the compaction behavior of assemblies composed of soft (elastic) spherical particles beyond the jammed state, using three-dimensional non-smooth contact dynamic simulations. The assemblies of particles are characterized using the evolution of the packing fraction, the coordination number, and the von Misses stress distribution within the particles as the confining stress increases. The packing fraction increases and tends toward a maximum value close to 1, and the mean coordination number increases as a square root of the packing fraction.

View Article and Find Full Text PDF

We analyze the isotropic compaction of assemblies composed of soft pentagons interacting through classical Coulomb friction via numerical simulations. The effect of the initial particle shape is discussed by comparing packings of pentagons with packings of soft circular particles. We characterize the evolution of the packing fraction, the elastic modulus, and the microstructure (particle rearrangement, connectivity, contact force, and particle stress distributions) as a function of the applied stresses.

View Article and Find Full Text PDF

We analyze the isotropic compaction of mixtures composed of rigid and deformable incompressible particles by the nonsmooth contact dynamics approach. The deformable bodies are simulated using a hyperelastic neo-Hookean constitutive law by means of classical finite elements. We characterize the evolution of the packing fraction, the elastic modulus, and the connectivity as a function of the applied stresses when varying the interparticle coefficient of friction.

View Article and Find Full Text PDF

We present a systematic numerical investigation concerning the combined effects of sliding friction and particle shape (i.e., angularity) parameters on the shear strength and microstructure of granular packings.

View Article and Find Full Text PDF

The compaction behavior of deformable grain assemblies beyond jamming remains bewildering, and existing models that seek to find the relationship between the confining pressure P and solid fraction ϕ end up settling for empirical strategies or fitting parameters. Using a coupled discrete-finite element method, we analyze assemblies of highly deformable frictional grains under compression. We show that the solid fraction evolves nonlinearly from the jamming point and asymptotically tends to unity.

View Article and Find Full Text PDF

Understanding the bioavailability and metabolism of coffee compounds will contribute to identify the unknown biological mechanism(s) linked to their beneficial effects. The influence of the roasting process on the metabolism of coffee chlorogenic acids in humans was evaluated. In a randomized, double-blind, crossover study, 12 healthy volunteers consumed four instant coffees namely, high roasted coffee (HRC), low roasted coffee (LRC), unroasted coffee (URC), and in vitro hydrolyzed unroasted coffee (HURC).

View Article and Find Full Text PDF

Chlorogenic acids and derivatives like phenolic acids are potentially bioactive phenolics, which are commonly found in many foods. Once absorbed, chlorogenic and phenolic acids are highly metabolized by the intestine and the liver, producing glucuronidated and/or sulphated compounds. These metabolites were analyzed in human plasma using a validated liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method.

View Article and Find Full Text PDF

Scope: Coffee contains phenolic compounds, mainly chlorogenic acids (CGAs). Even though coffee intake has been associated with some health benefits in epidemiological studies, the bioavailability of coffee phenolics is not fully understood.

Objective And Study Design: We performed a dose-response study measuring plasma bioavailability of phenolics after drinking three increasing, but still nutritionally relevant doses of instant pure soluble coffee.

View Article and Find Full Text PDF

Scope: Tea is an infusion of the Camellia sinensis leaves. The most prevalent bioactive compounds in green tea are catechins (C), which are of great interest for their potential health-promoting effects. However, metabolism and bioavailability of C are not fully understood.

View Article and Find Full Text PDF

Chlorogenic acids (CGAs) from coffee have biological effects related to human health. Thus, specific data on their bioavailability in the upper gastrointestinal tract are of high interest, since some molecules are absorbed here and so are not metabolized by colonic microflora. Up to now, no data on structure-absorption relationships for CGAs have been published, despite this being the most consumed group of polyphenols in the western diet.

View Article and Find Full Text PDF

Scope: Until now, the question of how the ingested doses of chlorogenic acids (CGA) from coffee influence their absorption and metabolism remains unresolved. To assess absorption in the small intestine, we performed a dose-response study with a randomized, double-blinded, crossover design with ileostomist subjects.

Methods And Results: After a polyphenol-free diet, the volunteers consumed, on three separate occasions, coffee with different total CGA contents (high 4525 μmol; medium 2219 μmol; low 1053 μmol).

View Article and Find Full Text PDF

Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects.

View Article and Find Full Text PDF

Scope: This study reports the 24 h human plasma pharmacokinetics of 3,4-dimethoxycinnamic acid (dimethoxycinnamic acid) after consumption of coffee, and the membrane transport characteristics of certain dimethoxycinnamic acid derivatives, as present in coffee.

Methods And Results: Eight healthy human volunteers consumed a low-polyphenol diet for 24 h before drinking 400 mL of commercially available coffee. Plasma samples were collected over 24 h and analyzed by HPLC-MS(2) .

View Article and Find Full Text PDF

Our hypothesis in this study was that in vitro disappearance of isoflavones from fecal or cecal contents of Golden Syrian hamsters paralleled the apparent absorption of these compounds, comparable with previous findings from in vitro human fecal incubations. Two studies were conducted to test this idea: one on in vitro fecal (study 1, n = 20/sex) and the other on in vitro cecal contents (study 2, n = 10/sex) ability to degrade isoflavones. According to HPLC analysis, urinary isoflavone excretion was significantly less by 2-4 fold in males compared with females in both studies.

View Article and Find Full Text PDF

This study reports a liquid chromatography-mass spectrometry method for the detection of polyphenol-derived metabolites in human plasma without enzymatic treatment after coffee consumption. Separation of available standards was achieved by reversed-phase ultra performance liquid chromatography and detection was performed by high resolution mass spectrometry in negative electrospray ionization mode. This analytical method was then applied for the identification and relative quantification of circulating coffee metabolites.

View Article and Find Full Text PDF

Coffee contains a complex mixture of chlorogenic acids, which are mainly ferulic and caffeic acids ester-linked to quinic acid. Green tea contains flavanols, mainly (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC) and (-)-epicatechin (EC). For healthy humans, we identified seven studies on green tea in liquid form and five on coffee beverage reporting single-dose plasma pharmacokinetics.

View Article and Find Full Text PDF

Inter-individual variation in isoflavone absorption depends on gut microbial degradation and affects the efficacy of these compounds. We hypothesized that inter-individual variation in fecal isoflavone disappearance coincided with variation in bacterial species. In vitro anaerobic fecal disappearance of isoflavones was measured from 33 participants by HPLC.

View Article and Find Full Text PDF

Background: Tea is an infusion of the leaves of the Camellia sinensis plant and is the most widely consumed beverage in the world after water. Green tea contains significant amounts of polyphenol catechins and represents a promising dietary component to maintain health and well-being. Epidemiological studies indicate that polyphenol intake may have potential health benefits, such as, reducing the incidence of coronary heart disease, diabetes and cancer.

View Article and Find Full Text PDF

There is a substantial amount of published literature on the bioavailability of various coffee components including the most abundant metabolites, caffeic and ferulic acids. Surprisingly, to date, the appearance of dimethoxycinnamic acid derivatives in humans has not been reported despite the fact that methylated form of catechol-type polyphenols could help maintain, modify or even improve their biological activities. This study reports an LC-MS method for the detection of dimethoxycinnamic acid in human plasma after treatment with an esterase.

View Article and Find Full Text PDF

Coffee and green tea are two of the most widely consumed hot beverages in the world. Their respective bioavailability has been studied separately, but absorption of their respective bioactive phenolics has not been compared. In a randomised cross-over design, nine healthy subjects drank instant coffee and green tea.

View Article and Find Full Text PDF