Publications by authors named "Mathieu Paoletti"

Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism.

View Article and Find Full Text PDF

Recognition and response to non self is essential to development and survival of all organisms. It can occur between individuals of the same species or between different organisms. Fungi are established models for conspecific non self recognition in the form of vegetative incompatibility (VI), a genetically controlled process initiating a programmed cell death (PCD) leading to the rejection of a fusion cell between genetically different isolates of the same species.

View Article and Find Full Text PDF

In filamentous fungi, allorecognition takes the form of heterokaryon incompatibility, a cell death reaction triggered when genetically distinct hyphae fuse. Heterokaryon incompatibility is controlled by specific loci termed het-loci. In this article, we analyzed the natural variation in one such fungal allorecognition determinant, the het-c heterokaryon incompatibility locus of the filamentous ascomycete Podospora anserina.

View Article and Find Full Text PDF

Background: Prions are infectious proteins propagating as self-perpetuating amyloid polymers. The [Het-s] prion of Podospora anserina is involved in a cell death process associated with non-self recognition. The prion forming domain (PFD) of HET-s adopts a β-solenoid amyloid structure characterized by the two fold repetition of an elementary triangular motif.

View Article and Find Full Text PDF

The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A.

View Article and Find Full Text PDF

Background: Genes involved in non-self recognition and host defence are typically capable of rapid diversification and exploit specialized genetic mechanism to that end. Fungi display a non-self recognition phenomenon termed heterokaryon incompatibility that operates when cells of unlike genotype fuse and leads to the cell death of the fusion cell. In the fungus Podospora anserina, three genes controlling this allorecognition process het-d, het-e and het-r are paralogs belonging to the same hnwd gene family.

View Article and Find Full Text PDF

In fungi, cell fusion between genetically unlike individuals triggers a cell death reaction known as the incompatibility reaction. In Podospora anserina, the genes controlling this process belong to a gene family encoding STAND proteins with an N-terminal cell death effector domain, a central NACHT domain and a C-terminal WD-repeat domain. These incompatibility genes are extremely polymorphic, subject to positive Darwinian selection and display a remarkable genetic plasticity allowing for constant diversification of the WD-repeat domain responsible for recognition of non-self.

View Article and Find Full Text PDF

In fungi, vegetative incompatibility is a conspecific non-self recognition mechanism that restricts formation of viable heterokaryons when incompatible alleles of specific het loci interact. In Podospora anserina, three non-allelic incompatibility systems have been genetically defined involving interactions between het-c and het-d, het-c and het-e, het-r and het-v. het-d and het-e are paralogues belonging to the HNWD gene family that encode proteins of the STAND class.

View Article and Find Full Text PDF

The completed genome sequence of the coprophilous fungus Podospora anserina increases the sampling of fungal genomes. In line with its habitat of herbivore dung, this ascomycete has an exceptionally rich gene set devoted to the catabolism of complex carbohydrates.

View Article and Find Full Text PDF

Sexual reproduction occurs in two fundamentally different ways: by outcrossing, in which two distinct partners contribute nuclei, or by self-fertilization (selfing), in which both nuclei are derived from the same individual. Selfing is common in flowering plants, fungi, and some animal taxa. We investigated the genetic basis of selfing in the homothallic fungus Aspergillus nidulans.

View Article and Find Full Text PDF

Conspecific allorecognition, the ability for an organism to discriminate its own cells from those of another individual of the same species, has been developed by many organisms. Allorecognition specificities are determined by highly polymorphic genes. The processes by which this extreme polymorphism is generated remain largely unknown.

View Article and Find Full Text PDF

Filamentous fungi are naturally able of somatic fusions. When cells of unlike genotype at specific het loci fuse, non-self recognition operates in the fusion cell and a cell death reaction termed cell death by incompatibility is triggered. In Podospora anserina cell death by incompatibility is characterized by a dramatic vacuolar enlargement, induction of autophagy and cell lysis.

View Article and Find Full Text PDF

The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution. Here we report the genome sequence of the model organism Aspergillus nidulans, and a comparative study with Aspergillus fumigatus, a serious human pathogen, and Aspergillus oryzae, used in the production of sake, miso and soy sauce. Our analysis of genome structure provided a quantitative evaluation of forces driving long-term eukaryotic genome evolution.

View Article and Find Full Text PDF

The Dutch elm disease fungus Ophiostoma novo-ulmi, which has destroyed billions of elm trees worldwide, originally invaded Europe as a series of clonal populations with a single mating type (MAT-2) and a single vegetative incompatibility (vic) type. The populations then rapidly became diverse with the appearance of the MAT-1 type and many vegetative incompatibility types. Here, we have investigated the mechanism using isolates from sites in Portugal at which the rapid evolution of O.

View Article and Find Full Text PDF

There were two successive pandemics of Dutch Elm Disease (DED) in Europe, parts of Asia and North America in the last century, caused by two ascomycete fungal species, Ophiostoma ulmi and O. novo-ulmi. A third DED species, O.

View Article and Find Full Text PDF

Aspergillus fumigatus is a medically important opportunistic pathogen and a major cause of respiratory allergy. The species has long been considered an asexual organism. However, genome analysis has revealed the presence of genes associated with sexual reproduction, including a MAT-2 high-mobility group mating-type gene and genes for pheromone production and detection (Galagan et al.

View Article and Find Full Text PDF

The breeding systems of three species of the lichen-forming fungal genus Cladonia were investigated. Cladonia floerkeana, Cladonia galindezii, and Cladonia portentosa were selected due to their contrasting ecologies and reproductive strategies, and because they belong to the Lecanorales, the major lichen-forming order. Sibling single-spore progeny were collected from apothecia and used to establish axenic cultures.

View Article and Find Full Text PDF

In filamentous fungi, a programmed cell death (PCD) reaction occurs when cells of unlike genotype fuse. This reaction is caused by genetic differences at specific loci termed het loci (for heterokaryon incompatibility). Although several het genes have been characterized, the mechanism of this cell death reaction and its relation to PCD in higher eukaryotes remains largely unknown.

View Article and Find Full Text PDF

In filamentous fungi, a cell death reaction occurs when cells of unlike genotype fuse. This cell death reaction, known as incompatibility reaction, is genetically controlled by a set of loci termed het loci (for heterokaryon incompatibility loci). In Podospora anserina, genes induced during this cell death reaction (idi genes) have been identified.

View Article and Find Full Text PDF