Purpose Of The Study: The use of chimeric antigen receptor (CAR)-T cells has demonstrated excellent results in B-lymphoid malignancies. The Advanced Therapy Medicinal Products (ATMP) status and good manufacturing practice (GMP) of CAR-T cells require particular conditions of production performed in a pharmaceutical establishment. Our team developed a new medical drug candidate for acute myeloid leukemia (AML), a CAR targeting interleukin-1 receptor accessory protein (IL-1RAP) expressed by leukemia stem cells, which will need to be evaluated in a phase I-IIa clinical trial.
View Article and Find Full Text PDFBackground: Acute myeloid leukemia (AML) remains a very difficult disease to cure due to the persistence of leukemic stem cells (LSCs), which are resistant to different lines of chemotherapy and are the basis of refractory/relapsed (R/R) disease in 80% of patients with AML not receiving allogeneic transplantation.
Methods: In this study, we showed that the interleukin-1 receptor accessory protein (IL-1RAP) protein is overexpressed on the cell surface of LSCs in all subtypes of AML and confirmed it as an interesting and promising target in AML compared with the most common potential AML targets, since it is not expressed by the normal hematopoietic stem cell. After establishing the proof of concept for the efficacy of chimeric antigen receptor (CAR) T-cells targeting IL-1RAP in chronic myeloid leukemia, we hypothesized that third-generation IL-1RAP CAR T-cells could eliminate AML LSCs, where the medical need is not covered.
Background: Genetically engineered chimeric antigen receptor (CAR) T lymphocytes are promising therapeutic tools for cancer. Four CAR T cell drugs, including tisagenlecleucel (tisa-cel) and axicabtagene-ciloleucel (axi-cel), all targeting CD19, are currently approved for treating B cell malignancies. Flow cytometry (FC) remains the standard for monitoring CAR T cells using a recombinant biotinylated target protein.
View Article and Find Full Text PDFRecent studies have provided several insights into acute myeloid leukemia. Studies based on molecular biology have identified eight functional mutations involved in leukemogenesis, including driver and passenger mutations. Insight into Leukemia stem cells (LSCs) and assessment of cell surface markers have enabled characterization of LSCs from hematopoietic stem and progenitor cells.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) is a chronic disease resulting in myeloid cell expansion through expression of the BCR-ABL1 fusion transcript. Tyrosine kinase inhibitors (TKI) have significantly increased survival of patients with CML, and deep responders may consider stopping the treatment. However, more than 50% of patients relapse and restart TKI, subsequently suffering unknown toxicity.
View Article and Find Full Text PDF