Publications by authors named "Mathieu Miron"

Translation is a fundamental step in gene expression, and translational control is exerted in many developmental processes. Most eukaryotic mRNAs are translated by a cap-dependent mechanism, which requires recognition of the 5'-cap structure of the mRNA by eukaryotic translation initiation factor 4E (eIF4E). eIF4E activity is controlled by eIF4E-binding proteins (4E-BPs), which by competing with eIF4G for eIF4E binding act as translational repressors.

View Article and Find Full Text PDF

Background: DNA microarrays are popular tools for measuring gene expression of biological samples. This ever increasing popularity is ensuring that a large number of microarray studies are conducted, many of which with data publicly available for mining by other investigators. Under most circumstances, validation of differential expression of genes is performed on a gene to gene basis.

View Article and Find Full Text PDF

Many biologists believe that data analysis expertise lags behind the capacity for producing high-throughput data. One view within the bioinformatics community is that biological scientists need to develop algorithmic skills to meet the demands of the new technologies. In this article, we argue that the broader concept of inferential literacy, which includes understanding of data characteristics, experimental design and statistical analysis, in addition to computation, more adequately encompasses what is needed for efficient progress in high-throughput biology.

View Article and Find Full Text PDF

eIF4E, the mRNA 5' cap-binding protein, is regulated by its binding protein (4E-BP), a downstream target of phosphatidylinositol-3-OH kinase [PI(3)K] signaling. We show that Drosophila 4E-BP (d4E-BP) activity becomes critical for survival under dietary restriction and oxidative stress, and is linked to life span. The Drosophila forkhead transcription factor (dFOXO) activates d4E-BP transcription.

View Article and Find Full Text PDF

The 3' poly(A) tail of eukaryotic mRNAs and the poly(A) binding protein (PABP) play important roles in the regulation of translation. Recently, a human PABP-interacting protein, Paip2, which disrupts the PABP-poly(A) interaction and consequently inhibits translation, was described. To gain insight into the biological role of Paip2, we studied the Drosophila melanogaster Paip2 (dPaip2).

View Article and Find Full Text PDF

The eIF4E-binding proteins (4E-BPs) interact with translation initiation factor 4E to inhibit translation. Their binding to eIF4E is reversed by phosphorylation of several key Ser/Thr residues. In Drosophila, S6 kinase (dS6K) and a single 4E-BP (d4E-BP) are phosphorylated via the insulin and target of rapamycin (TOR) signaling pathways.

View Article and Find Full Text PDF

Eukaryotic translation initiation factor 4E (eIF4E) binds to the cap structure at the 5' end of mRNAs and is a critical target for the control of protein synthesis. eIF4E is phosphorylated in many systems in response to extracellular stimuli, but biochemical evidence to date has been equivocal as to the biological significance of this modification. Here we use a genetic approach to this problem.

View Article and Find Full Text PDF