Although cobalt (Co) plays a significant role in the transition to low-carbon technologies, its environmental impact remains largely unknown. This study examines Co impacts on the prokaryotic communities within river biofilms to evaluate their potential use as bioindicators of Co contamination. To this end, biofilms were cultivated in artificial streams enriched with different environmental Co concentrations (0.
View Article and Find Full Text PDFThe response of the meta-metabolome is rarely used to characterize the effects of contaminants on a whole community. Here, the meta-metabolomic fingerprints of biofilms were examined after 1, 3 and 7 days of exposure to five concentrations of cobalt (from background concentration to 1 × 10 M) in aquatic microcosms. The untargeted metabolomic data were processed using the DRomics tool to build dose-response models and to calculate benchmark-doses.
View Article and Find Full Text PDFUntargeted metabolomics is a non-a priori analysis of biomolecules that characterizes the metabolome variations induced by short- and long-term exposures to stressors. Even if the metabolite annotation remains lacunar due to database gaps, the global metabolomic fingerprint allows for trend analyses of dose-response curves for hundreds of cellular metabolites. Analysis of dose/time-response curve trends (biphasic or monotonic) of untargeted metabolomic features would thus allow the use of all the chemical signals obtained in order to determine stress levels (defense or damage) in organisms.
View Article and Find Full Text PDF