In this study, Silicon Carbide (SiC) nanoparticle-based serigraphic printing inks were formulated to fabricate highly sensitive and wide temperature range printed thermistors. Inter-digitated electrodes (IDEs) were screen printed onto Kapton substrate using commercially avaiable silver ink. Thermistor inks with different weight ratios of SiC nanoparticles were printed atop the IDE structures to form fully printed thermistors.
View Article and Find Full Text PDFThe quality factor of microelectromechanical resonators is a crucial performance metric and has thus been the subject of numerous studies aimed at maximizing its value by minimizing the anchor loss. This work presents a study on the effect of elastic wave reflectors on the quality factor of MEMS clamped-clamped flexural beam resonators. The elastic wave reflectors are a series of holes created by trenches in the silicon substrate of the resonators.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2022
In this article, a methodology for increasing the displacement of the membrane in nonlinear transducers is presented. This methodology that relies on pulse shaping is based on the frequency modulation of the excitation signal which in turn results in an amplitude modulation of the displacement of the resonator. The benefits of pulse shaping include the increase of the displacement of the membrane of the resonator, the ability to leverage two mechanisms to dynamically tune the resonant frequency of the device and a relative control of the decay time of the resonator.
View Article and Find Full Text PDFThe engineering of optomechanical systems has exploded over the past decades, with many geometries and applications arising from the coupling of light with mechanical motion. The modulation of electromagnetic radiation in the terahertz (THz) frequency range through optomechanical systems is no exception to this research effort. However, some fundamental modulation capabilities for THz communications and/or high-speed data processing applications are yet to be established.
View Article and Find Full Text PDFNonlinear, mechanical microelectromechanical system (MEMS) resonating structures exhibit large displacement and a relatively broad operating bandwidth. These unique features make them particularly of interest for the development of MEMS actuators and sensors. In this work, a mechanical MEMS structure allowing the designer to determine the type of nonlinearity, that is, softening or hardening, based on its anchor scheme is presented.
View Article and Find Full Text PDFWith the rise of the Internet of Things (IoT) and the ever-increasing number of integrated sensors, the question of powering these devices represents an additional challenge. The traditional approach is to use a battery; however, harvesting energy from the environment seems to be the most practical approach. To that end, the use of piezoelectric MEMS energy has been proven as a potential power source in a wide range of applications.
View Article and Find Full Text PDFPiezoelectric energy harvesters have proven to have the potential to be a power source in a wide range of applications. As the harvester dimensions scale down, the resonance frequencies of these devices increase drastically. Proof masses are essential in micro-scale devices in order to decrease the resonance frequency and increase the strain along the beam to increase the output power.
View Article and Find Full Text PDF