Publications by authors named "Mathieu Gisselbrecht"

A permanently available molecular-beam injection setup for controlled molecules (COMO) was installed and commissioned at the small quantum systems (SQS) instrument at the European x-ray free-electron laser (EuXFEL). A b-type electrostatic deflector allows for pure state-, size-, and isomer-selected samples of polar molecules and clusters. The source provides a rotationally cold (T ≈ 1 K) and dense (ρ ≈ 108 cm-3) molecular beam with pulse durations up to 100 µs generated by a new version of the Even-Lavie valve.

View Article and Find Full Text PDF

Quantum entanglement between the degrees of freedom encountered in the classical world is challenging to observe due to the surrounding environment. To elucidate this issue, we investigate the entanglement generated over ultrafast timescales in a bipartite quantum system comprising two massive particles: a free-moving photoelectron, which expands to a mesoscopic length scale, and a light-dressed atomic ion, which represents a hybrid state of light and matter. Although the photoelectron spectra are measured classically, the entanglement allows us to reveal information about the dressed-state dynamics of the ion and the femtosecond extreme ultraviolet pulses delivered by a seeded free-electron laser.

View Article and Find Full Text PDF

Adamantane, the smallest diamondoid molecule with a symmetrical cage, contains two distinct carbon sites, CH and CH2. The ionization/excitation of the molecule leads to the cage opening and strong structural reorganization. While theoretical predictions suggest that the carbon site CH primarily causes the cage opening, the role of the other CH2 site remains unclear.

View Article and Find Full Text PDF

CO-rich planetary atmospheres are continuously exposed to ionising radiation driving major photochemical processes. In the Martian atmosphere, CO clusters are predicted to exist at high altitudes motivating a deeper understanding of their photochemistry. In this joint experimental-theoretical study, we investigate the photoreactions of CO clusters (≤2 nm) induced by soft X-ray ionisation.

View Article and Find Full Text PDF

We investigate the fragmentation dynamics of adamantane dications produced after core-ionization at the carbon edge followed by Auger decay. The combination of high-resolution electron spectroscopy, energy-resolved electron-ion multi-coincidence spectroscopy and different theoretical models allows us to give a complete characterization of the processes involved after ionization. We show that energy- and site-sensitivity is observed even for a highly-symmetric molecule that lacks any unique atomic site.

View Article and Find Full Text PDF

Symmetry breaking and competition between electronic decay and nuclear dynamics are major factors determining whether the memory of the initial core-hole localisation in a molecule is retained long enough to affect fragmentation. We investigate the fate of core holes localised at different sites in the free 1,3 butadiene molecule by using synchrotron radiation to selectively excite core electrons from different C 1s sites to π* orbitals. Fragmentation involving bonds localised at the site of the core hole provides clear evidence for preferential bond breaking for a core hole located at the terminal carbon site, while the signature of localisation is weak for a vacancy on the central carbon site.

View Article and Find Full Text PDF

Photoionization of atoms and molecules is one of the fastest processes in nature. The understanding of the ultrafast temporal dynamics of this process often requires the characterization of the different angular momentum channels over a broad energy range. Using a two-photon interferometry technique based on extreme ultraviolet and infrared ultrashort pulses, we measure the phase and amplitude of the individual angular momentum channels as a function of kinetic energy in the outer-shell photoionization of neon.

View Article and Find Full Text PDF

Rabi oscillations are periodic modulations of populations in two-level systems interacting with a time-varying field. They are ubiquitous in physics with applications in different areas such as photonics, nano-electronics, electron microscopy and quantum information. While the theory developed by Rabi was intended for fermions in gyrating magnetic fields, Autler and Townes realized that it could also be used to describe coherent light-matter interactions within the rotating-wave approximation.

View Article and Find Full Text PDF

The photoionization of xenon atoms in the 70-100 eV range reveals several fascinating physical phenomena such as a giant resonance induced by the dynamic rearrangement of the electron cloud after photon absorption, an anomalous branching ratio between intermediate Xe states separated by the spin-orbit interaction and multiple Auger decay processes. These phenomena have been studied in the past, using in particular synchrotron radiation, but without access to real-time dynamics. Here, we study the dynamics of Xe 4d photoionization on its natural time scale combining attosecond interferometry and coincidence spectroscopy.

View Article and Find Full Text PDF

When small quantum systems, atoms or molecules, absorb a high-energy photon, electrons are emitted with a well-defined energy and a highly symmetric angular distribution, ruled by energy quantization and parity conservation. These rules are based on approximations and symmetries which may break down when atoms are exposed to ultrashort and intense optical pulses. This raises the question of their universality for the simplest case of the photoelectric effect.

View Article and Find Full Text PDF

While largely studied on the macroscopic scale, the dynamics leading to nucleation and fission processes in atmospheric aerosols are still poorly understood at the molecular level. Here, we present a joint experimental-theoretical study of a model system consisting of hydrogen-bonded ammonia and water molecules. Experimentally, the clusters were produced via adiabatic co-expansion.

View Article and Find Full Text PDF

In a seminal article, Fano predicts that absorption of light occurs preferably with increase of angular momentum. We generalize Fano's propensity rule to laser-assisted photoionization, consisting of absorption of an extreme-ultraviolet photon followed by absorption or emission of an infrared photon. The predicted asymmetry between absorption and emission leads to incomplete quantum interference in attosecond photoelectron interferometry.

View Article and Find Full Text PDF

Charge transfer (CT) at avoided crossings of excited ionized states of argon dimers is observed using a two-color pump-probe experiment at the free-electron laser in Hamburg (FLASH). The process is initiated by the absorption of three 27-eV-photons from the pump pulse, which leads to the population of Ar-Ar states. Due to nonadiabatic coupling between these one-site doubly ionized states and two-site doubly ionized states of the type Ar-Ar, CT can take place leading to the population of the latter states.

View Article and Find Full Text PDF

Electron correlation and multielectron effects are fundamental interactions that govern many physical and chemical processes in atomic, molecular and solid state systems. The process of autoionization, induced by resonant excitation of electrons into discrete states present in the spectral continuum of atomic and molecular targets, is mediated by electron correlation. Here we investigate the attosecond photoemission dynamics in argon in the 20-40 eV spectral range, in the vicinity of the 3snp autoionizing resonances.

View Article and Find Full Text PDF

The charge and proton dynamics in hydrogen-bonded networks are investigated using ammonia as a model system. The fragmentation dynamics of medium-sized clusters (1-2 nm) upon single photon multi-ionization is studied, by analyzing the momenta of small ionic fragments. The observed fragmentation pattern of the doubly- and triply-charged clusters reveals a spatial anisotropy of emission between fragments (back-to-back).

View Article and Find Full Text PDF

Dissociative double photoionization of cyclopropane is studied in the inner-valence region using tunable synchrotron radiation. With the aid of ab initio quantum chemical calculations the energies of dication states and their favoured fragmentation pathways are determined. These are compared to the experimental appearance energies of two-body fragmentation processes and to the kinetic energy released upon dissociation.

View Article and Find Full Text PDF

Dissociative double-photoionization of butadiene in the 25-45 eV energy range has been studied with tunable synchrotron radiation using full three-dimensional ion momentum imaging. Using ab initio calculations, the electronic states of the molecular dication below 33 eV are identified. The results of the measurement and calculation show that double ionization from π orbitals selectively triggers twisting about the terminal or central C-C bonds.

View Article and Find Full Text PDF

Nuclear motion in the N1s(-1)4a core-excited state of ammonia is investigated by studying the angular anisotropy of fragments produced in the decay of the highly excited molecule and compared with predictions from ab initio calculations. Two different fragmentation channels (H(+)/NH2(+) and H(+)/NH(+)/H) reveal complex nuclear dynamics as the excitation photon energy is tuned through the 4a1 resonance. The well-defined angular anisotropy of the fragments produced in the dissociation of the molecular dication species suggests a very rapid nuclear motion and the time scale of the nuclear dynamics is limited to the low fs timescale.

View Article and Find Full Text PDF

We report on the versatile design and operation of a two-sided spectrometer for the imaging of charged-particle momenta in two dimensions (2D) and three dimensions (3D). The benefits of 3D detection are to discern particles of different mass and to study correlations between fragments from multi-ionization processes, while 2D detectors are more efficient for single-ionization applications. Combining these detector types in one instrument allows us to detect positive and negative particles simultaneously and to reduce acquisition times by using the 2D detector at a higher ionization rate when the third dimension is not required.

View Article and Find Full Text PDF

The angular anisotropy of fragments created in the dissociation of core-electron excited water molecules is studied to probe the correlation between fragmentation channels, kinematics and molecular geometry. We present fragment kinetic measurements for water molecules where the inner-shell oxygen electron is excited to the unoccupied 4a1 and 2b2 valence molecular orbitals. The kinematics of individual fragmentation channels are measured using fully three-dimensional momentum imaging of fragments.

View Article and Find Full Text PDF

Electron-ion-ion coincidence measurements of sulfur dioxide at discrete resonances near the O 1s ionization edge are reported. The spectra are analyzed using a model based upon molecular symmetry and on the geometry of the molecule. We find clear evidence for molecular alignment that can be ascribed to symmetry properties of the ground and core-excited states.

View Article and Find Full Text PDF

Photofragmentation of argon clusters of average size ranging from 10 up to 1000 atoms is studied using soft x-ray radiation below the 2p threshold and multicoincidence mass spectroscopy technique. For small clusters (=10), ionization induces fast fragmentation with neutral emission imparting a large amount of energy. While the primary dissociation takes place on a picosecond time scale, the fragments undergo slow degradation in the spectrometer on a microsecond time scale.

View Article and Find Full Text PDF

Photofragmentation of small argon clusters with size below ten atoms is reported. In this size range significant modifications from the electronic properties and geometry take place. When tuning the photon energy through the argon 2p edge, the fragmentation pattern is changed.

View Article and Find Full Text PDF

Electron-ion-ion coincidence measurements carried out at discrete resonances near the N 1s threshold in ammonia are reported. The measured coincidence spectra show clear alignment of the molecule upon resonant core-electron excitation. The coincidence data are analyzed to extract information about the molecule in the excited state by simulating the alignment and the dissociation processes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncmlin5vrg8hbht4cpfh2u0qrgsnm3osa): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once