The synthesis and characterization of six new lanthanide networks [Ln(L)(ox)(HO)] with Ln = Eu, Gd, Tb, Dy, Ho and Yb is reported. They were synthesized by solvo-ionothermal reaction of lanthanide nitrate Ln(NO)·HO with the 1,3-bis(carboxymethyl)imidazolium [HL] ligand and oxalic acid (Hox) in a water/ethanol solution. The crystal structure of these compounds has been solved on single crystals and the magnetic and luminescent properties have been investigated relying on intrinsic properties of the lanthanide ions.
View Article and Find Full Text PDFCeO2 is a promising material for applications in optoelectronics and photovoltaics due to its large band gap and values of the refractive index and lattice parameters, which are suitable for silicon-based devices. In this study, we show that trivalent Sm, Nd and Yb ions can be successfully inserted and optically activated in CeO2 films grown at a relatively low deposition temperature (400 °C), which is compatible with inorganic photovoltaics. CeO2 thin films can therefore be efficiently functionalized with photon-management properties by doping with trivalent rare earth (RE) ions.
View Article and Find Full Text PDFEscherichia coli abatement was studied in liquid phase under visible light in the presence of two commercial titania photocatalysts, and of Fe- and Al-doped titania samples prepared by high energy ball-milling. The two commercial titania photocatalysts, Aeroxide P25 (Evonik industries) exhibiting both rutile and anatase structures and MPT625 (Ishihara Sangyo Kaisha), a Fe-, Al-, P- and S-doped titania exhibiting only the rutile phase, are active suggesting that neither the structure nor the doping is the driving parameter. Although the MPT625 UV-visible spectrum is shifted towards the visible domain with respect to the P25 one, the effect on bacteria is not increased.
View Article and Find Full Text PDFSilicon nanocrystals (SiNCs) smaller than 5 nm are a material with strong visible photoluminescence (PL). However, the physical origin of the PL, which, in the case of oxide-passivated SiNCs, is typically composed of a slow-decaying red-orange band (S-band) and of a fast-decaying blue-green band (F-band), is still not fully understood. Here we present a physical interpretation of the F-band origin based on the results of an experimental study, in which we combine temperature (4-296 K), temporally (picosecond resolution) and spectrally resolved luminescence spectroscopy of free-standing oxide-passivated SiNCs.
View Article and Find Full Text PDFWe present evidence of all-optical trion generation and emission in pristine single-walled carbon nanotubes (SWCNTs). Luminescence spectra, recorded on individual SWCNTs over a large cw excitation intensity range, show trion emission peaks redshifted with respect to the bright exciton peak. Clear chirality dependence is observed for 22 separate SWCNT species, allowing for determination of electron-hole exchange interaction and trion binding energy contributions.
View Article and Find Full Text PDFWe investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases.
View Article and Find Full Text PDF