Publications by authors named "Mathieu Doucet"

The past two decades have seen growing calls for the "tobacco endgame." Its advocates are united by their commitment to two ideas. First, tobacco-related harms represent a catastrophic health emergency, and second, current tobacco-control approaches are an inadequate response to the scale of that emergency.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how ultrathin films made of polyzwitterions respond to electric fields when thermally annealed and placed on silicon substrates, using specular neutron reflectometry (NR) and X-ray reflectivity (XRR).
  • Researchers applied a high voltage under vacuum and observed changes in film thickness, finding that the thickness decreased by up to 8% depending on the type of added salt, attributed to the loss of water and ionic liquids rather than electrostrictive effects.
  • The combination of NR and XRR techniques offered insights into the films' hygroscopic nature and structural changes in response to electric fields, highlighting their potential applications in charged polymer technologies.
View Article and Find Full Text PDF

Neutron reflectometry has long been a powerful tool to study the interfacial properties of energy materials. Recently, time-resolved neutron reflectometry has been used to better understand transient phenomena in electrochemical systems. Those measurements often comprise a large number of reflectivity curves acquired over a narrow range, with each individual curve having lower information content compared to a typical steady-state measurement.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how certain metal ions interact with special types of materials called redox polymers.
  • They found that one polymer, called PVFc, is better at separating one metal (ReO) from another (MoO) compared to another polymer (PFPMAm) when looked at closely.
  • The research helps us understand how to create better systems for recovering and recycling important metals from solutions.
View Article and Find Full Text PDF

Macromolecular crowding is the usual condition of cells. The implications of the crowded cellular environment for protein stability and folding, protein-protein interactions, and intracellular transport drive a growing interest in quantifying the effects of crowding. While the properties of crowded solutions have been extensively studied, less attention has been paid to the interaction of crowders with the cellular boundaries, i.

View Article and Find Full Text PDF

Bottlebrush random copolymers (BRCPs), consisting of a random distribution of two homopolymer chains along a backbone, can segregate to the interface between two immiscible homopolymers. BRCPs undergo a reconfiguration, where each block segregates to one of the homopolymer phases, adopting a Janus-type structure, reducing the interfacial tension and promoting adhesion between the two homopolymers, thereby serving as a Janus bottlebrush copolymer (JBCP) compatibilizer. We synthesized a series of JBCPs by copolymerizing deuterated or hydrogenated polystyrene (DPS/PS) and poly(-butyl acrylate) (PtBA) macromonomers using ruthenium benzylidene-initiated ring-opening metathesis polymerization (ROMP).

View Article and Find Full Text PDF

Electro-responsive metallopolymers can possess highly specific and tunable ion interactions, and have been explored extensively as electrode materials for ion-selective separations. However, there remains a limited understanding of the role of solvation and polymer-solvent interactions in ion binding and selectivity. The elucidation of ion-solvent-polymer interactions, in combination with the rational design of tailored copolymers, can lead to new pathways for modulating ion selectivity and morphology.

View Article and Find Full Text PDF
Article Synopsis
  • Diblock copolymers experience microphase separation due to the repulsive interactions between different types of monomers, but this process is more complex in thin films due to additional factors like confinement and surface interactions.
  • Traditional physics-based models have been used to analyze neutron reflectivity data from these films, but extracting important interaction parameters can be difficult and error-prone.
  • This study introduces a new method using advanced neural networks, particularly variational autoencoders, to more accurately and efficiently extract these interaction parameters from simulation data related to diblock copolymer thin films.
View Article and Find Full Text PDF

The HIV-1 Nef protein plays a critical role in viral infectivity, high-titer replication in vivo, and immune escape of HIV-infected cells. Nef lacks intrinsic biochemical activity, functioning instead through interactions with diverse host cell signaling proteins and intracellular trafficking pathways. Previous studies have established an essential role for Nef homodimer formation at the plasma membrane for most if not all its functions.

View Article and Find Full Text PDF

Halbach arrays are the most efficient closed structures for generating directed magnetic fields and gradients, and are widely used in various electric machines. We utilized fused deposition modeling-based Big Area Additive Manufacturing technology to print customized, compensated concentric Halbach array rings, using polyphenylene sulfide-bonded NdFeB permanent magnets for polarized neutron reflectometry. The Halbach rings could generate a 0 ≤  0.

View Article and Find Full Text PDF

The impact of the binding, solution structure, and solution dynamics of poly(vinylidene fluoride) (PVDF) with silicon on its performance as compared to traditional graphite and LiNiMnCoO (NMC) electrode materials was explored. Through refractive index (RI) measurements, the concentration of the binder adsorbed on the surface of electrode materials during electrode processing was determined to be less than half of the potentially available material resulting in excessive free binder in solution. Using ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS), it was found that PVDF forms a conformal coating over the entirety of the silicon particle.

View Article and Find Full Text PDF

In this work, we describe the design and development of an in situ neutron reflectometry cell for high temperature investigations of structural changes occurring at the interface between inorganic salts, in their molten state up to 800 °C, and corrosion resistant alloys or other surfaces. In the cell, a molten salt is confined by an annular ring of single crystal sapphire constrained between the sample substrate and a sapphire plate using two gold O-rings, enclosing a liquid salt volume of 20 ml, along with a dynamic cell volume to accommodate expansion of the liquid with heating. As a test case for the cell, we report on an in situ neutron reflectometry measurement of the interface between a eutectic salt mixture of MgCl-KCl (32:68 molar ratio) and a single crystal sapphire substrate at 450 °C, resulting in the formation of a 60 Å layer having a scattering length density of 1.

View Article and Find Full Text PDF

The effect of UV curing and shearing on the structure and behavior of a polyimide (PI) binder as it disperses silicon particles in a battery electrode slurry was investigated. PI dispersant effectiveness increases with UV curing time, which controls the overall binder molecular weight. The shear force during electrode casting causes higher molecular weight PI to agglomerate, resulting in battery anodes with poorly dispersed Si particles that do not cycle well.

View Article and Find Full Text PDF

This work probes the slurry architecture of a high silicon content electrode slurry with and without low molecular weight polymeric dispersants as a function of shear rate to mimic electrode casting conditions for poly(acrylic acid) (PAA) and lithium neutralized poly(acrylic acid) (LiPAA) based electrodes. Rheology coupled ultra-small angle neutron scattering (rheo-USANS) was used to examine the aggregation and agglomeration behavior of each slurry as well as the overall shape of the aggregates. The addition of dispersant has opposing effects on slurries made with PAA or LiPAA binder.

View Article and Find Full Text PDF

This work explores the complex interplay between slurry aggregation, agglomeration, and conformation (i.e. shape) of poly(acrylic acid) (PAA) and lithiated poly(acrylic acid) (LiPAA) based silicon slurries as a function of shear rate, and the resulting slurry homogeneity.

View Article and Find Full Text PDF

We use neutron reflectometry to study how the polymeric binder, poly(acrylic acid) (PAA), affects the in situ formation and chemical composition of the solid-electrolyte interphase (SEI) formation on a silicon anode at various states of charge. The reflectivity is correlated with electrochemical quartz crystal microbalance to better understand the viscoelastic effects of the polymer during cycling. The use of model thin films allows for a well-controlled interface between the amorphous Si surface and the PAA layer.

View Article and Find Full Text PDF

Establishing how water, or the absence of water, affects the structure, dynamics, and function of proteins in contact with inorganic surfaces is critical to developing successful protein immobilization strategies. In the present article, the quantity of water hydrating a monolayer of helical peptides covalently attached to self-assembled monolayers (SAMs) of alkyl thiols on Au was measured using neutron reflectometry (NR). The peptide sequence was composed of repeating LLKK units in which the leucines were aligned to face the SAM.

View Article and Find Full Text PDF

With the use of in situ neutron reflectometry (NR) we show how the addition of an electronically conductive polymeric binder, PEFM, mediates the solid-electrolyte interphase (SEI) formation and composition on an amorphous Si (a-Si) electrode as a function of the state-of-charge. Upon initial contact with the electrolyte a Li rich, 41 Å thick, layer forms on the surface of the anode below the polymer layer. At 0.

View Article and Find Full Text PDF

Self-assembled monolayers (SAMs) of alkyl thiols are frequently used to chemically functionalize gold surfaces for applications throughout materials chemistry, electrochemistry, and biotechnology. Despite this, a detailed understanding of the structure of the SAM-water interface generated from both formation and use of the SAM in an aqueous environment is elusive, and analytical measurements of the structure and chemistry of the SAM-water interface are an ongoing experimental challenge. To address this, we used neutron reflectometry (NR) to measure water association with both hydrophobic and hydrophilic SAMs under both wet and dry conditions.

View Article and Find Full Text PDF

We present a method to prepare shear thickening electrolytes consisting of silica nanoparticles in conventional liquid electrolytes with limited flocculation. These electrolytes rapidly and reversibly stiffen to solidlike behaviors in the presence of external shear or high impact, which is promising for improved lithium ion battery safety, especially in electric vehicles. However, in initial chemistries the silica nanoparticles aggregate and/or sediment in solution over time.

View Article and Find Full Text PDF

In this work we explore how an electrolyte additive (fluorinated ethylene carbonate - FEC) mediates the thickness and composition of the solid electrolyte interphase formed over a silicon anode in situ as a function of state-of-charge and cycle. We show the FEC condenses on the surface at open circuit voltage then is reduced to C-O containing polymeric species around 0.9 V (vs.

View Article and Find Full Text PDF

The death toll from tobacco is staggering: it might contribute to one billion premature deaths over the course of the 21st century. In 'The case for banning cigarettes', Kalle Grill and Kristin Voigt argue that the well-being and equality benefits of a complete ban on cigarettes more than justify the restrictions on autonomy that such a ban would impose. Their argument depends on two crucial simplifications: an assumption that the ban would be effective and the restriction of the analysis to a comparison with the status quo, rather than a broader range of policy options.

View Article and Find Full Text PDF

It is by now no secret that some scientific articles are ghost authored - that is, written by someone other than the person whose name appears at the top of the article. Ghost authorship, however, is only one sort of ghosting. In this article, we present evidence that pharmaceutical companies engage in the ghost management of the scientific literature, by controlling or shaping several crucial steps in the research, writing, and publication of scientific articles.

View Article and Find Full Text PDF