Publications by authors named "Mathieu Domalain"

Two-dimensional deep-learning pose estimation algorithms can suffer from biases in joint pose localizations, which are reflected in triangulated coordinates, and then in 3D joint angle estimation. Pose2Sim, our robust markerless kinematics workflow, comes with a physically consistent OpenSim skeletal model, meant to mitigate these errors. Its accuracy was concurrently validated against a reference marker-based method.

View Article and Find Full Text PDF

Being able to capture relevant information about elite athletes' movement "in the wild" is challenging, especially because reference marker-based approaches hinder natural movement and are highly sensitive to environmental conditions. We propose Pose2Sim, a markerless kinematics workflow that uses OpenPose 2D pose detections from multiple views as inputs, identifies the person of interest, robustly triangulates joint coordinates from calibrated cameras, and feeds those to a 3D inverse kinematic full-body OpenSim model in order to compute biomechanically congruent joint angles. We assessed the robustness of this workflow when facing simulated challenging conditions: (Im) degrades image quality (11-pixel Gaussian blur and 0.

View Article and Find Full Text PDF

Background: Despite abundant literature, the treatment of iliotibial band syndrome (ITBS) in cyclists remains complicated as it lacks evidence-based recommendations.

Purpose: The aim of this study was to develop a musculoskeletal modelling approach that investigates three potential biomechanical determinants of ITBS (strain, strain rate and compression force) and to use this approach to investigate the effect of saddle setback.

Design: Cross-sectional.

View Article and Find Full Text PDF

Knee functional disorders are one of the most common lower extremity non-traumatic injuries reported by cyclists. Incorrect bicycle configuration may predispose cyclist to injury but the evidence of an effect of saddle setback on knee pain remains inconclusive. The aim of this study was to determine the effect of saddle setback on knee joint forces during pedalling using a musculoskeletal modelling approach.

View Article and Find Full Text PDF

Besides its regulation by Union Cycliste Internationale, the evidence relating saddle setback to pedalling performance remains inconclusive. This study investigates the influence of saddle setback on pedalling effectiveness through two indexes: an index of pedalling force effectiveness and an index of pedalling work effectiveness. Eleven cyclists were assessed six saddle setback conditions while pedalling at a steady power output of 200 W and cadence of 90 rpm.

View Article and Find Full Text PDF

Intermuscular coupling has been investigated to understand neural inputs to coordinate muscles in a motor performance. However, little is known on the role of nerve innervation on intermuscular coupling. The purpose of this study was to investigate how the anatomy of nerve distribution affected intermuscular coupling in the hand during static grip.

View Article and Find Full Text PDF

Change in carpal arch width (CAW) is associated with wrist movement, carpal tunnel release, or therapeutic tunnel manipulation. This study investigated the angular rotations of the distal carpal joints as the CAW was adjusted. The CAW was narrowed and widened by 2 and 4 mm in seven cadaveric specimens while the bone positions were tracked by a marker-based motion capture system.

View Article and Find Full Text PDF

Kinematic analysis of the digits using optical motion capture systems relies on defining accurate coordinate systems for the individual segments. Limitations of previous digit kinematic protocols include marker placement errors, marker occlusion and superimposition, and skin movement artifact. The purpose of this study was to develop a protocol utilizing a digit alignment device (DAD) and nail marker clusters to overcome these limitations.

View Article and Find Full Text PDF

Purpose: To evaluate the impact of proximal interphalangeal (PIP) joint arthrodesis on the kinematics of precision pinch.

Methods: Eleven healthy subjects performed index finger-thumb pinch motions under 4 conditions: unrestricted thumb and index finger (CONTROL) and fusion of the PIP joint of the index finger in flexion of 30° (PIP30), 40° (PIP40), and 50° (PIP50). Fusion was simulated with metallic splints.

View Article and Find Full Text PDF

The objective of this study was to identify the impact of modifying the object width on muscle and joint forces while gripping objects. The experimental protocol consisted to maintain horizontally five objects of different widths (3.5, 4.

View Article and Find Full Text PDF

Osteoarthritis of the trapeziometacarpal (TMC) joint can be treated by arthrodesis and arthroplasty, which potentially decreases or increases the degrees of freedom (DoF) of the joint, respectively. The aim of our study was to bring novel biomechanical insights into these joint surgery procedures by investigating the influence of DoF at the TMC joint on muscle and joint forces in the thumb. A musculoskeletal model of the thumb was developed to equilibrate a 1 N external force in various directions while the thumb assumed key and pulp pinch postures.

View Article and Find Full Text PDF

While modeling the trapeziometacarpal (TMC) joint for determination of tendon forces, the TMC has been considered frictionless and passive moments created by soft tissues neglected. This, however, becomes inaccurate when reaching the joint end range of motion and considering that the TMC is entirely crossed by a complex network of skin, ligaments, soft tissues, and tendons. The objective of this study was to evaluate the passive moments with respect to joint posture in order to further include this relationship in biomechanical modeling.

View Article and Find Full Text PDF

Despite the paramount function of the thumb in daily life, thumb biomechanical models have been little developed and studied. Moreover, only two studies provided quantitative anthropometric data of tendon moment arms. To investigate thumb tendon tensions, biomechanicians and clinicians have to know the performances and the limits of these two data sets.

View Article and Find Full Text PDF