Publications by authors named "Mathieu Couade"

Objectives: To quantify the bias of shear wave speed (SWS) measurements between different commercial ultrasonic shear elasticity systems and a magnetic resonance elastography (MRE) system in elastic and viscoelastic phantoms.

Methods: Two elastic phantoms, representing healthy through fibrotic liver, were measured with 5 different ultrasound platforms, and 3 viscoelastic phantoms, representing healthy through fibrotic liver tissue, were measured with 12 different ultrasound platforms. Measurements were performed with different systems at different sites, at 3 focal depths, and with different appraisers.

View Article and Find Full Text PDF

Objectives: The aim of this study was to investigate the potential of shear wave imaging (SWI), a novel ultrasound-based technique, to noninvasively quantify passive diastolic myocardial stiffness in an ovine model of ischemic cardiomyopathy.

Background: Evaluation of diastolic left ventricular function is critical for evaluation of heart failure and ischemic cardiomyopathy. Myocardial stiffness is known to be an important property for the evaluation of the diastolic myocardial function, but this parameter cannot be measured noninvasively by existing techniques.

View Article and Find Full Text PDF

Breast cancer detection in the early stages is of great importance since the prognosis, and the treatment depends more on this. Multiple techniques relying on the mechanical properties of soft tissues have been developed to help in early detection. In this study, we implemented a technique that measures the nonlinear shear modulus (NLSM) (μ(NL)) in vivo and showed its utility to detect breast lesions from healthy tissue.

View Article and Find Full Text PDF

Objectives: Arterial stiffness is related to age and collagen properties of the arterial wall and can be indirectly evaluated by the pulse wave velocity (PWV). Ultrafast ultrasound imaging, a unique ultrahigh frame rate technique (>10, 000 images/s), recently emerged enabling direct measurement of carotid PWV and its variation over the cardiac cycle. Our goal was to characterize the carotid diastolic-systolic arterial stiffening using ultrafast ultrasound imaging in healthy individuals and in vascular Ehlers-Danlos syndrome (vEDS), in which collagen type III is defectuous.

View Article and Find Full Text PDF

Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (<60% of Maximal Voluntary Contraction, MVC). This measurement can therefore be used to estimate changes in individual muscle force. However, it is not known if this relationship remains valid for higher intensities.

View Article and Find Full Text PDF

Noninvasive ultrafast imaging of intrinsic waves such as electromechanical waves or remotely induced shear waves in elastography imaging techniques for human cardiac applications remains challenging. In this paper, we propose ultrafast imaging of the heart with adapted sector size by coherently compounding diverging waves emitted from a standard transthoracic cardiac phased-array probe. As in ultrafast imaging with plane wave coherent compounding, diverging waves can be summed coherently to obtain high-quality images of the entire heart at high frame rate in a full field of view.

View Article and Find Full Text PDF

In elastography, quantitative imaging of soft tissue elastic properties is provided by local shear wave speed estimation. Shear wave imaging in a homogeneous medium thicker than the shear wavelength is eased by a simple relationship between shear wave speed and local shear modulus. In thin layered organs, the shear wave is guided and thus undergoes dispersive effects.

View Article and Find Full Text PDF

The assessment of disrupted myocardial fiber arrangement may help to understand and diagnose hypertrophic or ischemic cardiomyopathy. We hereby proposed and developed shear wave imaging (SWI), which is an echocardiography-based, noninvasive, real-time, and easy-to-use technique, to map myofiber orientation. Five in vitro porcine and three in vivo open-chest ovine hearts were studied.

View Article and Find Full Text PDF

Supersonic shear imaging (SSI) has recently been demonstrated to be a repeatable and reproducible transient bidimensional elastography technique. We report a prospective clinical evaluation of the performances of SSI for liver fibrosis evaluation in 113 patients with hepatitis C virus (HCV) and a comparison with FibroScan (FS). Liver elasticity values using SSI and FS ranged from 4.

View Article and Find Full Text PDF

Objectives: The goal of this study was to assess whether myocardial stiffness could be measured by shear wave imaging (SWI) and whether myocardial stiffness accurately quantified myocardial function.

Background: SWI is a novel ultrasound-based technique for quantitative, local, and noninvasive mapping of soft tissue elastic properties.

Methods: SWI was performed in Langendorff perfused isolated rat hearts (n = 6).

View Article and Find Full Text PDF

Shear wave imaging was evaluated for the in vivo assessment of myocardial biomechanical properties on ten open chest sheep. The use of dedicated ultrasonic sequences implemented on a very high frame rate ultrasonic scanner ( > 5000 frames per second) enables the estimation of the quantitative shear modulus of myocardium several times during one cardiac cycle. A 128 element probe remotely generates a shear wave thanks to the radiation force induced by a focused ultrasonic burst.

View Article and Find Full Text PDF

A new ultrasound-based technique is proposed to assess the arterial stiffness: the radiation force of an ultrasonic beam focused on the arterial wall induces a transient shear wave (∼10 ms) whose propagation is tracked by ultrafast imaging. The large and high-frequency content (100 to 1500 Hz) of the induced wave enables studying the wave dispersion, which is shown experimentally in vitro and numerically to be linked to arterial wall stiffness and geometry. The proposed method is applied in vivo.

View Article and Find Full Text PDF