Publications by authors named "Mathieu Ciancone"

We investigated a series of Mn-Prussian blue (PB) nanoparticles NaMnFe[Fe(CN)]·HO of similar size, surface state and cubic morphology with various amounts of Mn synthesized through a one step self-assembly reaction. We demonstrated by a combined experimental-theoretical approach that during the synthesis, Mn substituted Fe up to a Mn/Na-Mn-Fe ratio of 32 at% in the PB structure, while for higher amounts, the Mn[Fe(CN)] analogue is obtained. For comparison, the post-synthetic insertion of Mn2+ in PB nanoparticles was also investigated and completed with Monte-Carlo simulations to probe the plausible adsorption sites.

View Article and Find Full Text PDF

To understand and predict the efficacy and toxicity of nanoparticle-based drugs in vivo, the free and entrapped forms of the drug have to be determined using suitable characterization methods. Herein, a solid-phase extraction (SPE) method combined with high-performance liquid chromatography (HPLC) measurements were used to separately quantify free and entrapped cyclosporine A (CsA) in 50 and 120 nm-sized lipid nanoparticles (NPs). Combined with colloidal stability measurements, HPLC quantification of the free and entrapped drug, separated using SPE, was used to monitor the stability of the nanotherapeutics under storage or physiological conditions.

View Article and Find Full Text PDF

New thermosensitive liposomes with a phase transition at 42 °C, containing nickel-bis(dithiolene) complexes as efficient and stable photothermal agents, have been formulated and characterized. These liposomes are highly stable and keep their contents at 37 °C for more than 30 days. On the contrary, the mild hyperthermia generated by the nickel-bis(dithiolene) complex under 940 nm NIR irradiation allows for the fine controlled release of the liposome contents, making such liposomes highly suitable for on-demand drug delivery in the human body under NIR laser irradiation.

View Article and Find Full Text PDF

Lipid nanocarriers incorporating glycerides, polyethylene glycol (PEG)-stearates and phospholipids have attracted great attention for in vivo diagnostic, in vivo imaging, activated or non-activated targeted drug delivery. For quality control purposes, the development of appropriate methods for the quantification of their lipid components is needed. In the present study, we developed an analytical method for lipid quantification in formulated nanoparticles.

View Article and Find Full Text PDF

Biocompatible nanoparticles (NPs) constituted by amphiphilic poly(ethylene glycol)-block-poly(benzyl malate), PEG-b-PMLABe, have been designed for site-specific PhotoThermal Controlled Release (PTCR) of drugs thanks to the presence of a near infra-red (NIR) photothermally active nickel-bis(dithiolene) complex in the inner core of the NPs, together with doxorubicin (Dox). A nanoprecipitation technique was used to prepare well-defined nickel-bis(dithiolene) and nickel-bis(dithiolene)/Dox loaded NPs, which were characterized by dynamic light scattering (DLS), zeta-potential measurements and Transmission Electron Microscopy (TEM). We have shown that the Dox release was effectively controlled by NIR irradiation (long or pulsed NIR laser irradiation).

View Article and Find Full Text PDF

This work demonstrates that metal-bis(dithiolene) complexes can be efficiently incorporated inside organic nanocarriers and, that under near-infrared (NIR) irradiation, their high photothermal activity can be finely used to release encapsulated drugs on demand. In contrast to gold nanoparticles and other organic NIR dyes, nickel-bis(dithiolene) complexes do not produce singlet oxygen under irradiation, a highly desirable characteristic to preserve the chemical integrity and activity of the loaded drug during the NIR-triggered release from the nanocarriers. Finally, cytotoxicity experiments performed on various cell lines have shown that the incorporation of such metal complexes do not increase the toxicity of the final liposomal formulation.

View Article and Find Full Text PDF

Reversible high temperature phase transitions were easily induced under laser irradiation in pure thermotropic liquid crystals built around photothermal nickel-bis(dithiolene) cores. The strong photothermal activity of nickel-bis(dithiolene) liquid crystalline thin films allows reaching a temperature as high as 250 °C directly from room temperature in a few seconds with high spatial control.

View Article and Find Full Text PDF