Publications by authors named "Mathieu C Husser"

Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells.

View Article and Find Full Text PDF

Cytokinesis is required to physically separate the daughter cells at the end of mitosis. This crucial process requires the assembly and ingression of an actomyosin ring, which must occur with high fidelity to avoid aneuploidy and cell fate changes. Most of our knowledge of mammalian cytokinesis was generated using over-expressed transgenes in HeLa cells.

View Article and Find Full Text PDF

We reveal the effects of a new microtubule-destabilizing compound in human cells. C75 has a core thienoisoquinoline scaffold with several functional groups amenable to modification. Previously we found that sub micromolar concentrations of C75 caused cytotoxicity.

View Article and Find Full Text PDF

Cytokinesis is the process that separates a cell into two daughter cells at the end of mitosis. Most of our knowledge of cytokinesis comes from overexpression studies, which affects our interpretation of protein function. Gene editing can circumvent this issue by introducing functional mutations or fluorescent probes directly into a gene locus.

View Article and Find Full Text PDF

Digital microfluidics (DMF) represents an alternative to the conventional microfluidic paradigm of transporting fluids in enclosed channels. One of the major benefits of DMF is that fluid motion and control is achieved without external pumps. The automation component of DMF have pushed the barriers of this "lab-on-chip" technology.

View Article and Find Full Text PDF

The expression of a recombinant gene in a host organism through induction can be an extensively manual and labor-intensive procedure. Several methods have been developed to simplify the protocol, but none has fully replaced the traditional IPTG-based induction. To simplify this process, we describe the development of an autoinduction platform based on digital microfluidics.

View Article and Find Full Text PDF

Digital microfluidics (DMF) is a technology that provides a means of manipulating nL-μL volumes of liquids on an array of electrodes. By applying an electric potential to an electrode, these discrete droplets can be controlled in parallel which can be transported, mixed, reacted, and analyzed. Typically, an automation system is interfaced with a DMF device that uses a standard set of basic instructions written by the user to execute droplet operations.

View Article and Find Full Text PDF