Asthma is a chronic lung disease with persistent airway inflammation, bronchial hyper-reactivity, mucus overproduction, and airway remodeling. Antagonizing T2 responses by triggering the immune system with microbial components such as Toll-like receptors (TLRs) has been suggested as a therapeutic concept for allergic asthma. The aim of this study was to evaluate the effect of a TLR2/6 agonist, FSL-1 (Pam2CGDPKHPKSF), administered by intranasal instillation after an allergic airway reaction was established in the ovalbumin (OVA) mouse model and to analyze the role of natural killer (NK) cells in this effect.
View Article and Find Full Text PDFThe amyloid precursor protein (APP) plays a central role in Alzheimer's disease (AD). Preventing deregulated APP processing by inhibiting amyloidogenic processing of carboxy-terminal fragments (APP-CTFs), and reducing the toxic effect of amyloid beta (Aβ) peptides remain an effective therapeutic strategy. We report the design of piperazine-containing compounds derived from chloroquine structure and evaluation of their effects on APP metabolism and ability to modulate the processing of APP-CTF and the production of Aβ peptide.
View Article and Find Full Text PDFBackground: The development of mucosal vaccines is crucial to efficiently control infectious agents for which mucosae are the primary site of entry. Major drawbacks of these protective strategies are the lack of effective mucosal adjuvant. Synthetic oligodeoxynucleotides that contain several unmethylated cytosine-guanine dinucleotide (CpG-ODN) motifs are now recognized as promising adjuvants displaying mucosal adjuvant activity through direct activation of TLR9-expressing cells.
View Article and Find Full Text PDFThe control of Listeria monocytogenes infection depends on the rapid activation of the innate immune system, likely through Toll-like receptors (TLR), since mice deficient for the common adapter protein of TLR signaling, myeloid differentiation factor 88 (MyD88), succumb to Listeria infection. In order to test whether TLR2 is involved in the control of infections, we compared the host response in TLR2-deficient mice with that in wild-type mice. Here we show that TLR2-deficient mice are more susceptible to systemic infection by Listeria than are wild-type mice, with a reduced survival rate, increased bacterial burden in the liver, and abundant and larger hepatic microabscesses containing increased numbers of neutrophils.
View Article and Find Full Text PDF