Publications by authors named "Mathie Najberg"

In view of inevitable recurrences despite resection, glioblastoma (GB) is still an unmet clinical need. Dealing with the stromal-cell derived factor 1-alpha (SDF-1α)/CXCR4 axis as a hallmark of infiltrative GB tumors and with the resection cavity situation, the present study described the effects and relevance of a new engineered micro-nanostructured SF-HA-Hep aerogel sponges, made of silk fibroin (SF), hyaluronic acid (HA) and heparin (Hep) and loaded with SDF-1α, to interfere with the GB ecosystem and residual GB cells, attracting and confining them in a controlled area before elimination. 70 µm-pore sponges were designed as an implantable scaffold to trap GB cells.

View Article and Find Full Text PDF

Chemokines such as stromal cell-derived factor-1α (SDF-1α) regulate the migration of cancer cells that can spread from their primary tumor site by migrating up an SDF-1α concentration gradient, facilitating their local invasion and metastasis. Therefore, the implantation of SDF-1α-releasing scaffolds can be a useful strategy to trap cancer cells expressing the CXCR4 receptor. In this work, SDF-1α was encapsulated into poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles and subsequently electrospun with chitosan to produce nanofibrous scaffolds of average fiber diameter of 261 ± 45 nm, intended for trapping glioblastoma (GBM) cells.

View Article and Find Full Text PDF

This work aims to design biocompatible aerogel sponges that can host and control the release of stromal cell-derived factor-1α (SDF-1α or CXCL12), a key protein for applications ranging from regenerative medicine to cancer therapy (notably for neural tissues). Miscibility of silk fibroin (SF) and hyaluronic acid (HA) was investigated by means of fluorescence and scanning electron microscopy to identify processing conditions. Series of freeze-dried sponges were prepared by associating and cross-linking within the same 3D structure, HA, SF, poly-l-lysine (PLL) and heparin (hep).

View Article and Find Full Text PDF

Despite the tremendous progress made in the field of cancer therapy in recent years, certain solid tumors still cannot be successfully treated. Alongside classical treatments in the form of chemotherapy and/or radiotherapy, targeted treatments such as immunotherapy that cause fewer side effects emerge as new options in the clinics. However, these alternative treatments may not be useful for treating all types of cancers, especially for killing infiltrative and circulating tumor cells (CTCs).

View Article and Find Full Text PDF

Chemokines are known to stimulate directed migration of cancer cells. Therefore, the strategy involving gradual chemokine release from polymeric vehicles for trapping cancer cells is of interest. In this work, the chemokine stromal cell-derived factor-1α (SDF-1α) was encapsulated into nanoparticles composed of poly-(lactic-co-glycolic acid) (PLGA) and a polyethylene glycol (PEG)-PLGA co-polymer to achieve sustained release.

View Article and Find Full Text PDF

Treatment of retinal diseases currently demands frequent intravitreal injections due to rapid clearance of the therapeutics. The use of high molecular weight polymers can extend the residence time in the vitreous and prolong the injection intervals. This study reports a water soluble graft copolymer as a potential vehicle for sustained intravitreal drug delivery.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessions3amukm3u92udln1jnsgchg9pf95hiki): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once