Cofactor F is an electron carrier playing a crucial role in a variety of microorganisms during redox reactions of the primary and secondary metabolism due to its low redox potential and thus arouses increasing interest. In this study, cofactor F glutamyl tail length spectra in various habitats like manure, compost, soil, and digester sludge samples and their respective microbial communities were investigated using high performance liquid chromatography and an amplicon sequencing approach A previous study was used to identify F producing microorganisms. The highest concentration of cofactor F could be achieved in the horse manure, digester sludge, and mixed manure samples, which was approximately 100-fold higher than in all the other samples.
View Article and Find Full Text PDFAn efficient biogas production out of organic (waste) materials is important to contribute to a carbon-neutral future. In this study, thermophilic press water (PW) coming from an organic fraction of the municipal solid waste digester was further digested in a thermo- and mesophilic posttreatment approach using two semicontinuous 14 L digesters. The results showed that the PW can still have considerable high biogas potential-at least during the touristic high season in central Europe.
View Article and Find Full Text PDFThe cofactor F420 plays a central role as a hydride carrier in the primary and secondary metabolism of many bacterial and archaeal taxa. The cofactor is best known for its role in methanogenesis, where it facilitates thermodynamically difficult reactions. As the polyglutamate tail varies in length between different organisms, length profile analyses might be a powerful tool for distinguishing and characterizing different groups and pathways in various habitats.
View Article and Find Full Text PDFThe cofactor F is synthesized by many different organisms and as a redox cofactor, it plays a crucial role in the redox reactions of catabolic and biosynthetic metabolic pathways. It consists of a deazaflavin structure, which is linked via lactate to an oligoglutamate chain, that can vary in length. In the present study, the methanogenic Archaea Methanosarcina thermophila and Methanoculleus thermophilus were cultivated on different carbon sources and their coenzyme F composition has been assayed by reversed-phase ion-pair high-performance liquid chromatography with fluorometric detection regarding both, overall cofactor F production and distribution of F glutamyl tail length.
View Article and Find Full Text PDF