Publications by authors named "Mathias Wipf"

The presence of heavy metal ions such as copper in the human body at certain concentrations and specific conditions can lead to the development of different diseases. The currently available analytical detection methods remain expensive, time-consuming, and often require sample pre-treatment. The development of specific and quantitative, easy-in-operation, and cost-effective devices, capable of monitoring the level of Cu ions in environmental and physiological media, is necessary.

View Article and Find Full Text PDF

Silicon nanowire field effect transistors (NWFETs) are low noise, low power, ultrasensitive biosensors that are highly amenable to integration. However, using NWFETs to achieve direct protein detection in physiological buffers such as blood serum remains difficult due to Debye screening, nonspecific binding, and stringent functionalization requirements. In this work, we performed an indirect sandwich immunoassay in serum combined with exponential DNA amplification and pH measurement by ultrasensitive NWFET sensors.

View Article and Find Full Text PDF

We report a method to suppress streaming potential using an Ag-coated microfluidic channel on a p-type silicon nanowire (SiNW) array measured by a multiplexed electrical readout. The metal layer sets a constant electrical potential along the microfluidic channel for a given reference electrode voltage regardless of the flow velocity. Without the Ag layer, the magnitude and sign of the surface potential change on the SiNW depends on the flow velocity, width of the microfluidic channel and the device's location inside the microfluidic channel with respect to the reference electrode.

View Article and Find Full Text PDF

Ionic gradients play a crucial role in the physiology of the human body, ranging from metabolism in cells to muscle contractions or brain activities. To monitor these ions, inexpensive, label-free chemical sensing devices are needed. Field-effect transistors (FETs) based on silicon (Si) nanowires or nanoribbons (NRs) have a great potential as future biochemical sensors as they allow for the integration in microscopic devices at low production costs.

View Article and Find Full Text PDF

Field-effect transistors (FETs) form an established technology for sensing applications. However, recent advancements and use of high-performance multigate metal-oxide semiconductor FETs (double-gate, FinFET, trigate, gate-all-around) in computing technology, instead of bulk MOSFETs, raise new opportunities and questions about the most suitable device architectures for sensing integrated circuits. In this work, we propose pH and ion sensors exploiting FinFETs fabricated on bulk silicon by a fully CMOS compatible approach, as an alternative to the widely investigated silicon nanowires on silicon-on-insulator substrates.

View Article and Find Full Text PDF

Ion-sensitive field-effect transistors based on silicon nanowires with high dielectric constant gate oxide layers (e.g., Al2O3 or HfO2) display hydroxyl groups which are known to be sensitive to pH variations but also to other ions present in the electrolyte at high concentration.

View Article and Find Full Text PDF

Silicon nanowire field-effect transistors have attracted substantial interest for various biochemical sensing applications, yet there remains uncertainty concerning their response to changes in the supporting electrolyte concentration. In this study, we use silicon nanowires coated with highly pH-sensitive hafnium oxide (HfO(2)) and aluminum oxide (Al(2)O(3)) to determine their response to variations in KCl concentration at several constant pH values. We observe a nonlinear sensor response as a function of ionic strength, which is independent of the pH value.

View Article and Find Full Text PDF