Publications by authors named "Mathias Wegner"

Climate change may exacerbate the impact of invasive parasites from warmer climates through pre-existing temperature adaptations. We investigated temperature impacts on two closely related marine parasitic copepod species that share the blue mussel () as host: has invaded the system from a warmer climate <20 years ago, whereas its established congener has had >90 years to adapt. In laboratory experiments with temperatures 10-26°C, covering current and future temperatures as well as heat waves, the development of both life cycle stages of both species accelerated with increasing temperature.

View Article and Find Full Text PDF

Infections with pathogenic Vibrio strains are associated with high summer mortalities of Pacific oysters Magalana (Crassostrea) gigas, affecting production worldwide. This raises the question of how M. gigas cultures can be protected against deadly Vibro infection.

View Article and Find Full Text PDF

Life on tidal coasts presents physiological major challenges for sessile species. Fluctuations in oxygen and temperature can affect bioenergetics and modulate metabolism and redox balance, but their combined effects are not well understood. We investigated the effects of intermittent hypoxia (12h/12h) in combination with different temperature regimes (normal (15 °C), elevated (30 °C) and fluctuating (15 °C water/30 °C air)) on the Pacific oyster Crassostrea (Magallana) gigas.

View Article and Find Full Text PDF

Many gene families are shared across the tree of life between distantly related species because of horizontal gene transfers (HGTs). However, the frequency of HGTs varies strongly between gene families and biotic realms suggesting differential selection pressures and functional bias. One gene family with a wide distribution are FIC-domain containing enzymes (FicDs).

View Article and Find Full Text PDF

Predators can affect parasite-host interactions when directly preying on hosts or their parasites. However, predators may also have non-consumptive indirect effects on parasite-host interactions when hosts adjust their behaviour or physiology in response to predator presence. In this study, we examined how chemical cues from a predatory marine crab affect the transmission of a parasitic trematode from its first (periwinkle) to its second (mussel) intermediate host.

View Article and Find Full Text PDF

Phages depend on their bacterial hosts to replicate. The habitat, density and genetic diversity of host populations are therefore key factors in phage ecology, but our ability to explore their biology depends on the isolation of a diverse and representative collection of phages from different sources. Here, we compared two populations of marine bacterial hosts and their phages collected during a time series sampling program in an oyster farm.

View Article and Find Full Text PDF

Coevolution between bacteriophages (phages) and their bacterial hosts occurs through changes in resistance and counter-resistance mechanisms. To assess phage-host evolution in wild populations, we isolated 195 Vibrio crassostreae strains and 243 vibriophages during a 5-month time series from an oyster farm and combined these isolates with existing V. crassostreae and phage isolates.

View Article and Find Full Text PDF

The highly versatile group of Herpesviruses cause disease in a wide range of hosts. In invertebrates, only two herpesviruses are known: the malacoherpesviruses HaHV-1 and OsHV-1 infecting gastropods and bivalves, respectively. To understand viral transcript architecture and diversity we first reconstructed full-length viral genomes of HaHV-1 infecting and OsHV-1 infecting by DNA-seq.

View Article and Find Full Text PDF
Article Synopsis
  • The role of microbiota in bivalves is still unclear, though it may contribute to nutrition and immunity, with a focus on integrating various disciplines due to climate change impacts.
  • Current research examines methodologies for studying bivalve microbiota, compares microbiota across different bivalve species and environments, and investigates how environmental factors and host genetics influence these communities.
  • The findings suggest that host-associated microorganisms may help protect against pathogens and aid in recovery, potentially reducing disease incidence and mortality in bivalves.
View Article and Find Full Text PDF

Oyster microbiomes are integral to healthy function and can be altered by climate change conditions. Genetic variation among oysters is known to influence the response of oysters to climate change and may ameliorate any adverse effects on oyster microbiome; however, this remains unstudied. Nine full-sibling selected breeding lines of the Sydney rock oyster (Saccostrea glomerata) were exposed to predicted warming (ambient = 24°C, elevated = 28°C) and ocean acidification (ambient pCO2 = 400, elevated pCO2 = 1000 µatm) for 4 weeks.

View Article and Find Full Text PDF
Article Synopsis
  • The microbiome of marine organisms, particularly oysters like Saccostrea glomerata, plays a crucial role in their health and ecological contributions.
  • Researchers studied the effects of climate change factors, specifically increased temperature and carbon dioxide levels, on the oysters' microbiome over eight weeks using advanced genetic sequencing.
  • Results showed that both elevated carbon dioxide and temperature change altered the oysters' microbiome, potentially increasing their vulnerability to diseases due to changes in species diversity and richness.
View Article and Find Full Text PDF
Article Synopsis
  • Since 2008, Crassostrea gigas (Pacific oyster) aquaculture has faced mass mortalities linked to Ostreid herpesvirus 1 (OsHV-1), prompting research into the oyster's immune response and the role of small non-coding RNAs (sncRNAs) like microRNAs (miRNAs).
  • Transcriptomic analysis revealed that while mRNA profiles were significantly influenced by OsHV-1, showing changes in key immune pathways, miRNA profiles indicated more complex regulatory mechanisms with 15 differentially expressed miRNAs, but few interactions with antiviral genes.
  • The study advances understanding of the miRNA's role during OsHV-1 infection, highlighting potential areas for further research to explore relationships between viral
View Article and Find Full Text PDF

Bacteria of the genus are the most predominant infectious agents threatening marine wildlife and aquaculture. Due to the large genetic diversity of these pathogens, the molecular determinants of virulence are only poorly understood. Furthermore, studies tend to ignore co-evolutionary interactions between different host populations and their locally encountered communities.

View Article and Find Full Text PDF

Invasive species, and especially invasive parasites, represent excellent models to study ecological and evolutionary mechanisms in the wild. To understand these processes, it is crucial to obtain more knowledge on the native range, invasion routes and invasion history of invasive parasites. We investigated the consecutive invasions of two parasitic copepods (Mytilicola intestinalis and Mytilicola orientalis) by combining an extensive literature survey covering the reported putative native regions and the present-day invaded regions with a global phylogeography of both species.

View Article and Find Full Text PDF

Pacific oyster mortality syndrome affects juveniles of Crassostrea gigas oysters and threatens the sustainability of commercial and natural stocks of this species. Vibrio crassostreae (V. crassostreae) has been repeatedly isolated from diseased animals, and the majority of the strains have been demonstrated to be virulent for oysters.

View Article and Find Full Text PDF

Melanin plays a pivotal role in the cellular processes of several metazoans. The final step of the enzymically-regulated melanin biogenesis is the conversion of dopachrome into dihydroxyindoles, a reaction catalyzed by a class of enzymes called dopachrome tautomerases. We traced (DCT) and (DCE) genes throughout metazoans and we could show that only one class is present in most of the phyla.

View Article and Find Full Text PDF

There are surprisingly few field studies on the role of invasive species on parasite infection patterns in native hosts. We investigated the role of invasive Pacific oysters (Magallana gigas) in determining parasite infection levels in native blue mussels (Mytilus edulis) in relation to other environmental and biotic factors. Using hierarchical field sampling covering three spatial scales along a large intertidal ecosystem (European Wadden Sea), we found strong spatial differences in infection levels of five parasite species associated with mussels and oysters.

View Article and Find Full Text PDF

Plasticity, both within and across generations, can shape sexual traits involved in mate choice and reproductive success, and thus direct measures of fitness. Especially, transgenerational plasticity (TGP), where parental environment influences offspring plasticity in future environments, could compensate for otherwise negative effects of environmental change on offspring sexual traits. We conducted a mate choice experiment using stickleback ( Gasterosteus aculeatus) with different thermal histories (ambient 17°C or elevated 21°C) within and across generations under simulated ocean warming using outdoor mesocosms.

View Article and Find Full Text PDF

Parasite spillover from invasive aliens to native species increases the risk of disease emergence within native biota-either by direct harm to the new host or by indirect effects like increased risks of secondary infection. One example for such a detrimental effect is the parasitic copepod Mytilicola intestinalis that infected blue mussels Mytilus edulis after being introduced into the North Sea in the early 20th century. Since 1949, the parasite was blamed for multiple mass mortalities of infested blue mussels but evidence for a direct causal involvement of M.

View Article and Find Full Text PDF

Noroviruses are the major cause of foodborne outbreaks of acute gastroenteritis, which are often linked to raw oyster consumption. Previous studies have suggested histo-blood group antigens (HBGA)-like structures in the oyster tissues as ligands for norovirus binding and persistence. To better understand how oysters function as vectors for the most common human noroviruses, we first tested the ability of the norovirus strains GI.

View Article and Find Full Text PDF

Despite their frequent occurrence and strong impacts on native biota, biological invasions can long remain undetected. One reason for this is that an invasive species can be morphologically similar to either native species or introduced species previously established in the same region, and thus be subject to mistaken identification. One recent case involves congeneric invasive parasites, copepods that now infect bivalve hosts along European Atlantic coasts, after having been introduced independently first from the Mediterranean Sea (Mytilicola intestinalis Steuer, 1902) and later from Japan (Mytilicola orientalis Mori, 1935).

View Article and Find Full Text PDF

On theoretical grounds, antagonistic co-evolution between hosts and their parasites should be a widespread phenomenon but only received little empirical support so far. Consequently, the underlying molecular mechanisms and evolutionary steps remain elusive, especially in nonmodel systems. Here, we utilized the natural history of invasive parasites to document the molecular underpinnings of co-evolutionary trajectories.

View Article and Find Full Text PDF

Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae () in a periodically CO-enriched habitat.

View Article and Find Full Text PDF

The consequences of emerging marine diseases on the evolutionary trajectories of affected host populations in the marine realm are largely unexplored. Evolution in response to natural selection depends on the genetic variation of the traits under selection and the interaction of these traits with the environment (GxE). However, in the case of diseases, pathogen genotypes add another dimension to this interaction.

View Article and Find Full Text PDF