Publications by authors named "Mathias Ulbricht"

Electroplating is a widely used technology for anticorrosion materials and decorative coatings. In view of the transition to a circular economy, the current electroplating wastewater treatment disposing of heavy metal sludge and wastewater severely lacks sustainability. Authors recently reported the successful recycling of electroplating agents using hybrid semibatch/batch reverse osmosis technology (hybrid RO).

View Article and Find Full Text PDF

Owing to their widely available source materials, simple magnetic separation, and low cost, magnetic catalysts have demonstrated considerable application potential in modern photocatalysis technologies and environmental remediation. This review summarizes the synthesis and modification methods of magnetic catalysts and describes recent advances using different synthesis methods. Several key problems still need to be solved in the existing progress, such as the fact that the catalytic activity of magnetic catalysts decreases over time.

View Article and Find Full Text PDF

We introduced a new class of gas diffusion electrodes (GDEs) with adjustable pore morphology. We fabricated intrinsically conductive polymer-composite membranes containing carbon filler, enabling a pore structure variation through film casting cum phase separation protocols. We further selectively functionalized specific pore regions of the membranes with Cu by a NaBH-facilitated coating strategy.

View Article and Find Full Text PDF

Exploring the vast extraterrestrial space is an inevitable trend with continuous human development. Water treatment and reuse are crucial in the limited and closed space that is available in spaceships or long-term use space bases that will be established in the foreseeable future. Dedicated water treatment technologies have experienced iterative development for more than 60 years since the first manned spaceflight was successfully launched.

View Article and Find Full Text PDF

Oriented towards the pressing needs for hypersaline wastewater desalination and zero liquid discharge (ZLD), the contrasting mixed scaling of thermal-driven vacuum membrane distillation (VMD) and pressure-driven nanofiltration (NF) were investigated in this work. Bulk crystallization was the main mechanism in VMD due to the high salinity and temperature, but the time-independent resistance by the adsorption of silicate and organic matter dominated the initial scaling process. Surface crystallization and the consequent pore-blocking were the main scaling mechanisms in NF, with the high permeate drag force, hydraulic pressure, and cross-flow rate resulting in the dense scaling layer mainly composed of magnesium-silica hydrate (MSH).

View Article and Find Full Text PDF

The excitation by magnetic field was established to mitigate the membrane fouling of magnetic biochar (MB)-supplemented membrane bioreactor (MBR) in this study. The results showed that the transmembrane pressure (TMP) increase rates decreased by about 8 % after introducing the magnetic field compared with the magnetic biochar-MBR (MB-MBR). Membrane characterization suggested that the flocs in the magnetic field-magnetic biochar-MBR (MF-MB-MBR) formed a highly permeable developed cake layer, and a fluffier and more porous deposited layer on membrane surface, which minimized fouling clogging of the membrane pores.

View Article and Find Full Text PDF

We developed a novel method to fabricate copper nanorods in a poly(ether sulfone) (15 wt %) casting solution by a sonochemical reduction of Cu ions with NaBH. The main twist is the addition of ethanol to remove excess NaBH through Cu(0) catalyzed ethanolysis. This enabled the direct use of the resulting copper-containing casting dispersions for membrane preparation by liquid nonsolvent-induced phase separation and led to full utilization of the copper source, generating zero metal waste.

View Article and Find Full Text PDF
Article Synopsis
  • Rapid advancements in aerospace technology have made it possible to sustain long-term life and economic activity in Low Earth Orbit (LEO), but the reliance on Earth for essential supplies poses challenges.
  • The development of effective water treatment technologies for microgravity is crucial to support permanent human bases in space.
  • The paper reviews past scientific research to propose future directions for drinking water treatment in microgravity and introduces a new concept for space aquatic chemistry tailored to closed-loop systems.
View Article and Find Full Text PDF

Nanofiltration (NF) will play a crucial role in salt fractionation and recovery, but the complicated and severe mixed scaling is not yet fully understood. In this work, the mixed scaling patterns and mechanisms of high-pressure NF in zero-liquid discharge (ZLD) scenarios were investigated by disclosing the role of key foulants. The bulk crystallization of CaSO and Mg-Si complexes and the resultant pore blocking and cake formation under high pressure were the main scaling mechanisms in hypersaline desalination.

View Article and Find Full Text PDF
Article Synopsis
  • Membrane distillation (MD) faces challenges like fouling and wetting, which hinder its commercialization in water purification and wastewater treatment.
  • Magneto-responsive membranes (MagMem), embedded with magnetic nanoparticles (MNPs), offer solutions for in situ fouling mitigation and improved energy efficiency through magnetic actuation.
  • The use of MagMem in MD could revolutionize the field, enhancing performance with remote control features for pore tuning and adjustable wettability.
View Article and Find Full Text PDF

Even though pre-oxidation is usually considered as a promising method to alleviate membrane fouling, information on performance and inner mechanisms of pre-oxidation-influenced membrane fouling during nanofiltration of brackish water is still limited. This study is the first work in which oxidant reduction byproducts and interaction between different pollutants were particularly considered to address these problems. Herein, nanofiltration experiments with different pre-oxidized synthesis brackish water containing inorganic salts and organic pollutants were conducted.

View Article and Find Full Text PDF

Blend membranes consisting of two polymer pairs improve gas separation, but compromise mechanical and thermal properties. To address this, incorporating titanium dioxide (TiO) nanoparticles has been suggested, to enhance interactions between polymer phases. Therefore, the objective of this study was to investigate the impact of TiO as a filler on the thermal, surface mechanical, as well as gas separation properties of blend membranes.

View Article and Find Full Text PDF

Nitrogen-containing porous carbons prepared by the pyrolysis of adequate biopolymer-based precursors have shown potential in several electrochemical energy-related applications. However, it is still of crucial interest to find the optimal precursors and process conditions which would allow the preparation of carbons with adequate porous structure as well as suitable nitrogen content and distribution of functional groups. In the present work we suggested a straightforward approach to prepare N-doped porous carbons by direct pyrolysis under nitrogen of chitosan : coffee blends of different compositions and using KOH for simultaneous surface activation.

View Article and Find Full Text PDF

The treatment and reuse of hygiene wastewater is crucial to "close the loop" in the controlled ecological life support system (CELSS), and to guarantee longer space missions or planetary habitation. In this work, anaerobic membrane bioreactor (AnMBR) was applied for hygiene wastewater treatment, focused on surfactant degradation and microbial community succession. The removal efficiency of COD and surfactants was 90%∼97% and 80% with a urine source-separation strategy.

View Article and Find Full Text PDF

The three-dimensional (3D) structure of the cake layer, which could be influenced by water quality factors, plays a significant role in the ultrafiltration (UF) efficiency of water purification. However, it remains challenging to precisely reveal the variation of cake layer 3D structures and water channel characteristics. Herein, we systematically report the variation in the cake layer 3D structure at the nanoscale induced by key water quality factors and reveal its influence on water transport, in particular the abundance of water channels within the cake layer.

View Article and Find Full Text PDF

The variation in cake layer three-dimensional (3D) structures and related water channel characteristics induced by coagulation pretreatment remains unclear; however, gaining such knowledge will aid in improving ultrafiltration (UF) efficiency for water purification. Herein, the regulation of cake layer 3D structures (3D distribution of organic foulants within cake layers) by Al-based coagulation pretreatment was analyzed at the micro/nanoscale. The sandwich-like cake layer of humic acids and sodium alginate induced without coagulation was ruptured, and foulants were gradually uniformly distributed within the floc layer (toward an isotropic structure) with increasing coagulant dosage (a critical dosage was observed).

View Article and Find Full Text PDF

Membrane science and technology is growing rapidly worldwide and continues to play an increasingly important role in diverse fields by offering high separation efficiency with low energy consumption. Membranes have also shown great promise for "green" separation. A majority of the investigations in the field are devoted to the membrane fabrication and modification with the ultimate goals of enhancing the properties and separation performance of membranes.

View Article and Find Full Text PDF

A clean and sustainable energy source, biogas is widely accessible worldwide. The caloric value of biogas is related to its methane content, and therefore removal of other gases is essential for reaping the benefits of this cleaner resource. In contrast to other classical techniques, membrane technology is relatively new yet extremely promising for methane enrichment.

View Article and Find Full Text PDF

The Hagen-Poiseuille equation for gas flow had never been derived theoretically; it is rather a simple analogy of the same for liquid flow, and "gas viscosity" is a measure for overall resistance to flow. In this work, experimental flow data for different gases through capillaries and porous media, reported in literature by different groups, including those measured and treated by Knudsen are treated with Hagen-Poiseuille equation, but taking "gas viscosity" as an adjustable parameter. It is found that, at constant temperature, there exists an unambiguous relation between the viscosity (µ) of a given gas, and the product of average pressure (P ) and capillary diameter (D).

View Article and Find Full Text PDF

Antibacterial modification is a chemical-free method to mitigate biofouling, but surface accumulation of bacteria shields antibacterial groups and presents a significant challenge in persistently preventing membrane biofouling. Herein, a great synergistic effect of electrorepulsion and quaternary ammonium (QA) inactivation on maintaining antibacterial activity against biofouling has been investigated using an electrically conductive QA membrane (eQAM), which was fabricated by polymerization of pyrrole with QA compounds. The electrokinetic force between negatively charged and cathodic eQAM prevented cells from reaching the membrane surface.

View Article and Find Full Text PDF

This study investigated the effect of time on the severity of adsorptive fouling on polyvinylidene fluoride (PVDF) membrane surface. Sodium alginate (SA), bovine serum albumin (BSA), and humic acid (HA) were selected as representative membrane foulants. We examined the fouling behavior of these three selected model foulants over different adsorption durations (i.

View Article and Find Full Text PDF

Today the standard treatment for wastewater is secondary treatment. This procedure cannot remove salinity or some organic micropollutants from water. In the future, a tertiary cleaning step may be required.

View Article and Find Full Text PDF

Ceramic membranes have gained increasing attention in recent years for the removal of various contaminants from water. Alumina membrane is considered as one of the most important ceramic membranes, which plays important roles not only in separation processes such as microfiltration, ultrafiltration, and nanofiltration, but also in catalysis- and adsorption- enhanced separation applications in water purification and wastewater treatment. However, there is currently still lack of a comprehensive critical review about alumina membranes for water purification.

View Article and Find Full Text PDF

Electroplating generates high volumes of rinse water that is contaminated with heavy metals. This study presents an approach for direct metal recovery and recycling from simulated rinse water, made up of an electroplating electrolyte used in industry, using reverse osmosis (RO). To simulate the real industrial application, the process was examined at various permeate fluxes, ranging from 3.

View Article and Find Full Text PDF

Poly(N-isopropylacrylamide) (PNIPAAm) was introduced into a polyethylene terephthalate (PET) nonwoven fabric to develop novel support for polyamide (PA) thin-film composite (TFC) membranes without using a microporous support layer. First, temperature-responsive PNIPAAm hydrogel was prepared by reactive pore-filling to adjust the pore size of non-woven fabric, creating hydrophilic support. The developed PET-based support was then used to fabricate PA TFC membranes via interfacial polymerization.

View Article and Find Full Text PDF