Publications by authors named "Mathias Schlenk"

In biological fluids, proteins bind to particles, forming so-called protein coronas. Such adsorbed protein layers significantly influence the biological interactions of particles, both in vitro and in vivo. The adsorbed protein layer is generally described as a two-component system comprising "hard" and "soft" protein coronas.

View Article and Find Full Text PDF

Block copolymer self-assembly in solution paves the way for the construction of well-defined compartmentalized nanostructures. These are excellent templates for the incorporation and stabilisation of nanoparticles (NPs), giving rise to highly relevant applications in the field of catalysis or sensing. However, the regio-selective incorporation of NPs in specific compartments is still an issue, especially concerning the loading with different NP types.

View Article and Find Full Text PDF

The control of the distribution of colloidal particles in microfluidic flows plays an important role in biomedical and industrial applications. A particular challenge is to induce cross-streamline migration in laminar flows, enabling the separation of colloidal particles according to their size, shape or elasticity. Here we show that viscoelastic fluids can mediate cross-streamline migration of deformable spherical and cylindrical colloidal particles in sinusoidal microchannels at low Reynolds numbers.

View Article and Find Full Text PDF

Liquid microjets play a key role in fiber spinning, inkjet printing, and coating processes. In all of these applications, the liquid jets carry dispersed particles whose spatial and orientational distributions within the jet critically influence the properties of the fabricated structures. Despite its importance, there is currently no knowledge about the orientational distribution of particles within microjets and droplets.

View Article and Find Full Text PDF

We report the fabrication of highly permeable membranes in poly(ethylene glycol) diacrylate (PEGDA) channels, for investigating ultra- or micro-filtration, at the microfluidic scale. More precisely, we used a maskless UV projection setup to photo-pattern PEG-based hydrogel membranes on a large scale (mm-cm), and with a spatial resolution of a few microns. We show that these membranes can withstand trans-membrane pressure drops of up to 7 bar without any leakage, thanks to the strong anchoring of the hydrogel to the channel walls.

View Article and Find Full Text PDF

Delamination is a key step to obtain individual layers from inorganic layered materials needed for fundamental studies and applications. For layered van der Waals materials such as graphene, the adhesion forces are small, allowing for mechanical exfoliation, whereas for ionic layered materials such as layered silicates, the energy to separate adjacent layers is considerably higher. Quite counterintuitively, we show for a synthetic layered silicate (Na-hectorite) that a scalable and quantitative delamination by simple hydration is possible for high and homogeneous charge density, even for aspect ratios as large as 20000.

View Article and Find Full Text PDF