Polyene cyclizations are among the most complex and challenging transformations in biology. In a single reaction step, multiple carbon-carbon bonds, ring systems and stereogenic centres are constituted from simple, acyclic precursors. Simultaneously achieving this kind of precise control over product distribution and stereochemistry poses a formidable task for chemists.
View Article and Find Full Text PDFThe transition metal catalyzed hydrogenation of alkenes is a well-developed technology used on lab scale as well as on large scales in the chemical industry. Site- and chemoselective mono-hydrogenations of polarized conjugated dienes remain challenging. Instead, stoichiometric main-group hydrides are used rather than H .
View Article and Find Full Text PDFA direct carbonylation of allylic alcohols has been realized for the first time with high catalyst activity at low pressure of CO (10 bar). The procedure is described in detail for the carbonylation of E-nerolidol, an important step in a new BASF-route to (-)-ambrox. Key to high activities in the allylic alcohol carbonylation is the finding that catalytic amounts of carboxylic anhydride activate the substrate and are constantly regenerated with carbon monoxide under the reaction conditions.
View Article and Find Full Text PDFThe complex Ru-MACHO has been previously shown to undergo uncontrolled degradation subsequent to base-induced dehydrochlorination in the absence of a substrate. In this study, we report that stabilization of the dehydrochlorinated Ru-MACHO with phosphines furnishes complexes whose structures depend on the phosphines employed: while PMe led to the expected octahedral Ru complex, PPh provided access to a trigonal-bipyramidal Ru complex. Because both complexes proved to be active in base-free (de)hydrogenation reactions, thorough quantum-chemical calculations were employed to understand the reaction mechanism.
View Article and Find Full Text PDFWe herein describe the first synthesis of iminosugar C-glycosides of α-D-GlcNAc-1-phosphate in 10 steps starting from unprotected D-GlcNAc. A diastereoselective intramolecular iodoamination-cyclization as the key step was employed to construct the central piperidine ring of the iminosugar and the C-glycosidic structure of α-D-GlcNAc. Finally, the iminosugar phosphonate and its elongated phosphate analogue were accessed.
View Article and Find Full Text PDFThe mechanistic course of the amination of alcohols with ammonia catalyzed by a structurally modified congener of Milstein's well-defined acridine-based PNP-pincer Ru complex has been investigated both experimentally and by DFT calculations. Several key Ru intermediates have been isolated and characterized. The detailed analysis of a series of possible catalytic pathways (e.
View Article and Find Full Text PDF[Cp*Ir(Pro)Cl] (Pro = prolinato) was identified among a series of Cp*-iridium half-sandwich complexes as a highly reactive and selective catalyst for the alkylation of amines with alcohols. It is active under mild conditions in either toluene or water without the need for base or other additives, tolerates a wide range of alcohols and amines, and gives secondary amines in good to excellent isolated yields.
View Article and Find Full Text PDF[Image: see text] The extracellular endosulfatases, which modulate signalling pathways by removing sulfate groups from heparan, can be inhibited by replacing the 6-sulfate destined for cleavage with an inhibitory sulfamate motif, as demonstrated by simple glucosamine-6-sulfamate analogs of heparan sulfate.
View Article and Find Full Text PDFChiral 1,6-enynes were prepared via Ir-catalyzed allylic substitutions. Their platinum(II) chloride-catalyzed domino enyne isomerization/Diels-Alder reaction provided stereoselective access to complex heterocycles. Very high diastereoselectivity was induced by a chirality center of the enyne.
View Article and Find Full Text PDFA full account of a recently discovered gold(I)-catalyzed reaction, a cycloaddition of carbonyl compounds to enynes yielding 2-oxabicyclo[3.1.0]hexanes with four stereogenic centers, is presented.
View Article and Find Full Text PDFA broadly applicable synthesis of chiral 2- or 2,4-substituted cyclopent-2-enones has been developed by combining asymmetric iridium-catalyzed allylic alkylation reactions and ruthenium-catalyzed ring-closing metathesis. Enantiomeric excesses (ee values) in the range of 95-99 % ee have been achieved. This method offers a straightforward access to biologically active prostaglandins of the PGA type.
View Article and Find Full Text PDFIr-catalysed allylic substitution is supplementing the traditional Pd-catalysed variant. With simple, easily available monosubstituted allylic acetates and carbonates as substrates, Ir catalysts generally favour chiral, branched products, while Pd catalysts typically give rise to linear, achiral products. With phosphorus amidites as ligands, regioselectivities >10 : 1 and enantiomeric excess in the range 95-99 %ee are currently routinely achieved.
View Article and Find Full Text PDFCarbocycles with > 90% ee were prepared via Ir-catalysed asymmetric allylic alkylation/ring closing metathesis sequences or enantioselective Ir-catalysed intramolecular allylic alkylations.
View Article and Find Full Text PDF