Publications by authors named "Mathias Neugebauer"

Purpose: Decision support systems for mitral valve disease are an important step toward personalized surgery planning. A simulation of the mitral valve apparatus is required for decision support. Building a model of the chordae tendineae is an essential component of a mitral valve simulation.

View Article and Find Full Text PDF

Purpose: Various options are available for the treatment of mitral valve insufficiency, including reconstructive approaches such as annulus correction through ring implants. The correct choice of general therapy and implant is relevant for an optimal outcome. Additional to guidelines, decision support systems (DSS) can provide decision aid by means of virtual intervention planning and predictive simulations.

View Article and Find Full Text PDF

Purpose: The importance of mitral valve therapies is rising due to an aging population. Visualization and quantification of the valve anatomy from image acquisitions is an essential component of surgical and interventional planning. The segmentation of the mitral valve from computed tomography (CT) acquisitions is challenging due to high variation in appearance and visibility across subjects.

View Article and Find Full Text PDF

Purpose: To introduce a scheme based on a recent technique in computational hemodynamics, known as the lattice Boltzmann methods (LBM), to noninvasively measure pressure gradients in patients with a coarctation of the aorta (CoA). To provide evidence on the accuracy of the proposed scheme, the computed pressure drop values are compared against those obtained using the reference standard method of catheterization.

Materials And Methods: Pre- and posttreatment LBM-based pressure gradients for 12 patients with CoA were simulated for the time point of peak systole using the open source library OpenLB.

View Article and Find Full Text PDF

Purpose: The coarctation of the aorta (CoA), a local narrowing of the aortic arch, accounts for 7 % of all congenital heart defects. Stenting is a recommended therapy to reduce the pressure gradient. This procedure is associated with complications such as the development of adverse flow conditions.

View Article and Find Full Text PDF

The number of scientific publications dealing with stented intracranial aneurysms is rapidly increasing. Powerful computational facilities are now available; an accurate computational modeling of hemodynamics in patient-specific configurations is, however, still being sought. Furthermore, there is still no general agreement on the quantities that should be computed and on the most adequate analysis for intervention support.

View Article and Find Full Text PDF

Blood flow and derived data are essential to investigate the initiation and progression of cerebral aneurysms as well as their risk of rupture. An effective visual exploration of several hemodynamic attributes like the wall shear stress (WSS) and the inflow jet is necessary to understand the hemodynamics. Moreover, the correlation between focus-and-context attributes is of particular interest.

View Article and Find Full Text PDF