Publications by authors named "Mathias Michel"

Phillips argues that blindsight is due to response criterion artifacts under degraded conscious vision. His view provides alternative explanations for some studies, but may not work well when one considers several key findings in conjunction. Empirically, not all criterion effects are decidedly nonperceptual.

View Article and Find Full Text PDF

By using a correlated projection operator, the time-convolutionless (TCL) method to derive a quantum master equation can be utilized to investigate the transport behavior of quantum systems as well. Here, we analyze a three-dimensional anisotropic quantum model system according to this technique. The system consists of Heisenberg coupled two-level systems in one direction and weak random interactions in all other ones.

View Article and Find Full Text PDF

We investigate heat transport in a spin-1/2 Heisenberg chain, coupled locally to independent thermal baths of different temperature. The analysis is carried out within the framework of the theory of open systems by means of appropriate quantum master equations. The standard microscopic derivation of the weak-coupling Lindblad equation in the secular approximation is considered, and shown to be inadequate for the description of stationary nonequilibrium properties like a nonvanishing energy current.

View Article and Find Full Text PDF

We show that coupled two-level systems like qubits studied in quantum-information processing can be used as a thermodynamic machine. At least three qubits or spins are necessary and they must be arranged in a chain. The system is interfaced between two split baths and the working spin in the middle is externally driven.

View Article and Find Full Text PDF

The time-convolutionless (TCL) projection operator technique allows a systematic analysis of the non-Markovian quantum dynamics of open systems. We present a class of projection superoperators that project the states of the total system onto certain correlated system-environment states. It is shown that the application of the TCL technique to this class of correlated superoperators enables the nonperturbative treatment of the dynamics of system-environment models for which the standard approach fails in any finite order of the coupling strength.

View Article and Find Full Text PDF

We analyze closed one-dimensional chains of weakly coupled many level systems, by means of the so-called Hilbert space average method (HAM). Subject to some concrete conditions on the Hamiltonian of the system, our theory predicts energy diffusion with respect to a coarse-grained description for almost all initial states. Close to the respective equilibrium, we investigate this behavior in terms of heat transport and derive the heat conduction coefficient.

View Article and Find Full Text PDF

We consider a class of one-dimensional chains of weakly coupled many level systems. We present a theory which predicts energy diffusion within these chains for almost all initial states, if some concrete conditions on their Hamiltonians are met. By numerically solving the time dependent Schrödinger equation, we verify this prediction.

View Article and Find Full Text PDF

We solve the Schrödinger equation for an interacting spin chain locally coupled to a quantum environment with a specific degeneracy structure. The reduced dynamics of the whole spin chain as well as of single spins is analyzed. We show that the total spin chain relaxes to a thermal equilibrium state independently of the internal interaction strength.

View Article and Find Full Text PDF

An increase in sinus rate prior to ventricular tachyarrhythmias has been demonstrated in previous studies. There is no clear data available concerning changes in ventricular de- and repolarization prior to ventricular tachyarrhythmias, especially in patients with structural heart disease. Therefore, the aim of this study was to analyze the QT and QTc interval (Bazett's formula immediately before the onset of ventricular tachyarrhythmias in stored electrograms of patients with ICDs.

View Article and Find Full Text PDF