Radiol Cardiothorac Imaging
December 2024
Purpose To assess the influence of deep learning (DL)-based image reconstruction on acquisition time, volumetric results, and image quality of cine sequences in cardiac MRI. Materials and Methods This prospective study (performed from January 2023 to March 2023) included 55 healthy volunteers who underwent a noncontrast cardiac MRI examination at 1.5 T.
View Article and Find Full Text PDFTo develop a deep learning-based model capable of segmenting the left ventricular (LV) myocardium on native T1 maps from cardiac MRI in both long-axis and short-axis orientations. Models were trained on native myocardial T1 maps from 50 healthy volunteers and 75 patients using manual segmentation as the reference standard. Based on a U-Net architecture, we systematically optimized the model design using two different training metrics (Sørensen-Dice coefficient = DSC and Intersection-over-Union = IOU), two different activation functions (ReLU and LeakyReLU) and various numbers of training epochs.
View Article and Find Full Text PDFBackground: Artificial intelligence (AI) has the potential to fundamentally change radiology workflow.
Objectives: This review article provides an overview of AI applications in cardiovascular radiology with a focus on image acquisition, image reconstruction, and workflow optimization.
Materials And Methods: First, established applications of AI are presented for cardiovascular computed tomography (CT) and magnetic resonance imaging (MRI).
Rationale And Objectives: To assess the impact of deep learning-based imaging reconstruction (DLIR) on quantitative results of coronary artery calcium scoring (CACS) and to evaluate the potential of DLIR for radiation dose reduction in CACS.
Methods: For a retrospective cohort of 100 consecutive patients (mean age 62 ±10 years, 40% female), CACS scans were reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction (ASiR-V in 30%, 60% and 90% strength) and DLIR in low, medium and high strength. CACS was quantified semi-automatically and compared between image reconstructions.
CT protocols that diagnose COVID-19 vary in regard to the associated radiation exposure and the desired image quality (IQ). This study aims to evaluate CT protocols of hospitals participating in the RACOON (Radiological Cooperative Network) project, consolidating CT protocols to provide recommendations and strategies for future pandemics. In this retrospective study, CT acquisitions of COVID-19 patients scanned between March 2020 and October 2020 (RACOON phase 1) were included, and all non-contrast protocols were evaluated.
View Article and Find Full Text PDFWe investigated the effect of deep learning-based image reconstruction (DLIR) compared to iterative reconstruction on image quality in CT pulmonary angiography (CTPA) for suspected pulmonary embolism (PE). For 220 patients with suspected PE, CTPA studies were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction (ASiR-V 30%, 60% and 90%) and DLIR (low, medium and high strength). Contrast-to-noise ratio (CNR) served as the primary parameter of objective image quality.
View Article and Find Full Text PDFBackground: Myocardial mapping techniques can be used to quantitatively assess alterations in myocardial tissue properties. This study aims to evaluate the influence of spatial resolution on quantitative results and reproducibility of native myocardial T1 mapping in cardiac magnetic resonance imaging (MRI).
Methods: In this cross-sectional study with prospective data collection between October 2019 and February 2020, 50 healthy adults underwent two identical cardiac MRI examinations in the radiology department on the same day.
Background: This study aims to evaluate the impact of a novel deep learning-based image reconstruction (DLIR) algorithm on the image quality in computed tomographic angiography (CTA) for pre-interventional planning of transcatheter aortic valve implantation (TAVI).
Methods: We analyzed 50 consecutive patients (median age 80 years, 25 men) who underwent TAVI planning CT on a 256-dectector-row CT. Images were reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) and DLIR.