We report on a highly efficient, in-band pumped, Q-switched, Tm-doped, rod-type master oscillator power amplifier (MOPA) system delivering up to 140 W average output power and 7 mJ pulse energy with a slope efficiency of 77% at 20 kHz repetition rate. The amplifier is pumped with Raman-shifted fiber lasers centered at 1692 nm. This in-band pump scheme for Tm-doped fiber lasers can significantly mitigate their quantum defect-related heat load limitations.
View Article and Find Full Text PDFWe report on the efficient generation of broadband THz radiation based on a two-color gas-plasma scheme. Broadband THz pulses covering the whole THz spectral region, from 0.1-35 THz, are generated.
View Article and Find Full Text PDFWe report the nonlinear pulse compression of a high-power, thulium-doped fiber laser system using a gas-filled hollow-core fiber. The sub-two cycle source delivers 1.3 mJ pulse energy with 80 GW peak power at a central wavelength of 1.
View Article and Find Full Text PDFWe investigate the influence of the pump wavelength on the high-power amplification of large-mode area, thulium-doped fibers which are suitable for an ultrashort pulsed operation in the 2 µm wavelength region. By pumping a standard, commercially available photonic crystal fiber in an amplifier configuration at 1692 nm, a slope efficiency of 80 % at an average output power of 60 W could be shown. With the help of simulations we investigate the effect of cross-relaxations on the efficiency and the thermal behavior.
View Article and Find Full Text PDFHigh-energy, ultrafast, short-wavelength infrared laser sources with high average power are important tools for industrial and scientific applications. Through the coherent combination of four ultrafast thulium-doped rod-type fiber amplifiers, we demonstrate a Tm-doped chirped pulse amplification system with a compressed pulse energy of 1.65 mJ and 167 W of average output power at a repetition rate of 101 kHz.
View Article and Find Full Text PDFWe present the setup of a compact, q-switched, cryogenically cooled Yb:YAG laser, which is capable of producing over 1 J output energy in a 10 ns pulse at 10 Hz. The system's design is based on the recently published unstable cavity layout with gain shaping of the spatial intra-cavity intensity distribution. Using a hexagonal homogenized pump beam, the laser generated an according hexagonal output beam profile.
View Article and Find Full Text PDF