Publications by authors named "Mathias Hobisch"

Coffee, as one of the most traded resources, generates a vast amount of biogenic by-products. Coffee silver skins (CSS), a side stream from the roasting process, account for about 4 wt.%.

View Article and Find Full Text PDF

The increasing amount of electric vehicles on our streets as well as the need to store surplus energy from renewable sources such as wind, solar and tidal parks, has brought small and large scale batteries into the focus of academic and industrial research. While there has been huge progress in performance and cost reduction in the past years, batteries and their components still face several environmental issues including safety, toxicity, recycling and sustainability. In this review, we address these challenges by showcasing the potential of polysaccharide-based compounds and materials used in batteries.

View Article and Find Full Text PDF

Cellulosic nanomaterials are in the focus of academia and industry to realize light-weight biobased materials with remarkable strength. While the effect is well known, the distribution of these nanomaterials are less explored, particularly for paper sheets. Here, we explore the 3D distribution of micro and nanosized cellulosic particles in paper sheets and correlate their extent of fibrillation to the distribution inside the sheets and subsequently to paper properties.

View Article and Find Full Text PDF

Interactions of biomolecules at interfaces are important for a variety of physiological processes. Among these, interactions of lectins with monosaccharides have been investigated extensively in the past, while polysaccharide-lectin interactions have scarcely been investigated. Here, we explore the adsorption of galactomannans (GM) extracted from on cellulose thin films determined by a combination of multi-parameter surface plasmon resonance spectroscopy (MP-SPR) and atomic force microscopy (AFM).

View Article and Find Full Text PDF

Willow bark is a byproduct from forestry and is obtained at an industrial scale. We upcycled this byproduct in a two-step procedure into sustainable electrode materials for symmetrical supercapacitors using organic electrolytes. The procedure employed precarbonization followed by carbonization using different types of KOH activation protocols.

View Article and Find Full Text PDF

Cellulose derivate phase separation in thin films was applied to generate patterned films with distinct surface morphology. Patterned polymer thin films are utilized in electronics, optics, and biotechnology but films based on bio-polymers are scarce. Film formation, roughness, wetting, and patterning are often investigated when it comes to characterization of the films.

View Article and Find Full Text PDF

Herein, we report the synthesis of a novel, tetrazine-based conjugated polymer. Tetrazines have the benefit of being strong electron acceptors, while little steric hindrance is imposed on the flanking thiophene rings. Conversion of a suitably substituted nitrile precursor led to 3,6-bis(5-bromo-4-(2-octyldodecyl)thiophen-2-yl)-1,2,4,5-tetrazine (2OD-TTz).

View Article and Find Full Text PDF

This study investigates flexible (polyamide 6.6 PA-6.6, polyethylene terephthalate PET, Cu, Al, and Ni foils) and, for comparison, stiff substrates (silicon wafers and glass) differing in, for example, in surface free energy and surface roughness and their ability to host cellulose-based thin films.

View Article and Find Full Text PDF

Purpose: In this work, low-molecular-weight sulfoethyl chitosan (SECS) was used as a model template for the generation of silver core-shell nanoparticles with high potential as anticoagulants for medical applications.

Materials And Methods: SECS were synthesized by two reaction pathways, namely Michael addition and a nucleophilic substitution with sodium vinylsulfonate or sodium 2-bromoethanesulfonate (NaBES). Subsequently, these derivatives were used as reducing and capping agents for silver nanoparticles in a microwave-assisted reaction.

View Article and Find Full Text PDF

Background: The use of non-aqueous organic media is becoming increasingly important in many biotechnological applications in order to achieve process intensification. Such media can be used, for example, to directly extract poorly water-soluble toxic products from fermentations. Likewise many biological reactions require the supply of oxygen, most normally from air.

View Article and Find Full Text PDF