During extreme climate events, behavioural thermoregulation may buffer ectotherms from thermal stress and overheating. However, heatwaves are also combined with dry spells and limited water availability, and how much individuals can behaviourally mitigate dehydration risks through microclimate selection remains largely unknown. Herein, we investigated the behavioural and physiological responses to changes in air and microhabitat humidity in a terrestrial ectotherm, the asp viper (Vipera aspis).
View Article and Find Full Text PDFHeatwaves and droughts are becoming more intense and frequent with climate change. These extreme weather events often occur simultaneously and may alter organismal physiology, yet their combined impacts remain largely unknown. Here, we experimentally investigated physiological responses of a temperate ectotherm, the asp viper (Vipera aspis), to a simulated heatwave and drought.
View Article and Find Full Text PDFDroughts are becoming more intense and frequent with climate change. These extreme weather events can lead to mass mortality and reproduction failure, and therefore cause population declines. Understanding how the reproductive physiology of organisms is affected by water shortages will help clarify whether females can adjust their reproductive strategy to dry conditions or may fail to reproduce and survive.
View Article and Find Full Text PDF