Background & Aims: Cystic fibrosis (CF) is considered a multisystemic disorder in which CF-associated liver disease (CFLD) is the third most common cause of mortality. Currently, no effective treatment is available for CFLD because its pathophysiology is still unclear. Interestingly, CFLD exhibits identical vascular characteristics as non-cirrhotic portal hypertension, recently classified as porto-sinusoidal vascular disorders (PSVD).
View Article and Find Full Text PDFThe mesenchymal conversion of epithelial cells (EMT) has been suggested as a potential contributor in cystic fibrosis (CF) disease progression. Endothelial cells (EndCs), the cells lining blood vessels, express functional CFTR and CFTR impairment promotes endothelial activation and dysfunction. However, if the mesenchymal switch also exists in CF EndCs remains uncharacterized.
View Article and Find Full Text PDFCystic fibrosis (CF) is a life-threatening disorder characterised by decreased pulmonary mucociliary and pathogen clearance, and an exaggerated inflammatory response leading to progressive lung damage. CF is caused by bi-allelic pathogenic variants of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel. CFTR is expressed in endothelial cells (ECs) and EC dysfunction has been reported in CF patients, but a role for this ion channel in ECs regarding CF disease progression is poorly described.
View Article and Find Full Text PDFThe RAF/MEK/ERK signal transduction pathway is commonly deregulated in cancer and is activated by various stimuli regulating a variety of cell responses. In wild-type endothelial cells, upon permeability stimuli, ROKα, RAF1, BRAF, and RAP1 become activated, inducing a cascade of reactions resulting in F-actin remodeling and increased cell permeability. Here, Dorard et al.
View Article and Find Full Text PDF