Publications by authors named "Mathias B Steiner"

Carbon dioxide (CO ) trapping in capillary networks of reservoir rocks is a pathway to long-term geological storage. At pore scale, CO drainage displacement depends on injection pressure, temperature, and the rock's interaction with the surrounding fluids. Modeling this interaction requires adequate representations of both capillary volume and surface.

View Article and Find Full Text PDF

High-resolution computed micro-tomography is an important area of science, which correlates well with several experimental methodologies and serves as a basis for advanced computational physics studies, in which high-resolution images are used as input to different scientific simulation models. The dataset presented herein includes (raw) grayscale images obtained using the Bruker Skyscan 1272 X-Ray tomograph; filtered images acquired through contrast enhancement and noise reduction filters; and segmented images obtained by using the IsoData segmentation method. All images have a resolution of 2.

View Article and Find Full Text PDF

Permeability is the key parameter for quantifying fluid flow in porous rocks. Knowledge of the spatial distribution of the connected pore space allows, in principle, to predict the permeability of a rock sample. However, limitations in feature resolution and approximations at microscopic scales have so far precluded systematic upscaling of permeability predictions.

View Article and Find Full Text PDF

Wettability is the affinity of a liquid for a solid surface. For energetic reasons, macroscopic drops of liquid form nearly spherical caps. The degree of wettability is then captured by the contact angle where the liquid-vapor interface meets the solid-liquid interface.

View Article and Find Full Text PDF