VHH stands for the variable regions of heavy chain only of camelid IgGs. The VHH family forms a set of interesting proteins derived from antibodies that maintain their capacity to recognize the antigen, despite their relatively small molecular weight (in the 12,000 Da range). Continuing our exploration of the possibilities of those molecules, we chose to design alternative molecules with maintained antigen recognition, but enhanced capacity, by fusing four VHH with one Fc, the fragment crystallizable region of antibodies.
View Article and Find Full Text PDFAmong the biological approaches to therapeutics, are the cells, such as CAR-T cells engineered or not, the antibodies armed or not, and the smaller protein scaffolds that can be modified to render them specific of other proteins, à la façon of antibodies. For several years, we explored ways to substitute antibodies by nanobodies (also known as VHHs), the smallest recognizing part of camelids' heavy-chain antibodies: production of those small proteins in host microorganisms, minute analyses, characterization, and qualification of their affinity towards designed targets. Here, we present three standard VHHs described in the literature: anti-albumin, anti-EGF receptor and anti-HER2, a typical cancer cell surface -associated protein.
View Article and Find Full Text PDFSynthetic biology (or chemical biology) is a growing field to which the chemical synthesis of proteins, particularly enzymes, makes a fundamental contribution. However, the chemical synthesis of catalytically active proteins (enzymes) remains poorly documented because it is difficult to obtain enough material for biochemical experiments. We chose calstabin, a 107-amino-acid proline isomerase, as a model.
View Article and Find Full Text PDFLigand-target residence time is emerging as a key drug discovery parameter because it can reliably predict drug efficacy in vivo. Experimental approaches to binding and unbinding kinetics are nowadays available, but we still lack reliable computational tools for predicting kinetics and residence time. Most attempts have been based on brute-force molecular dynamics (MD) simulations, which are CPU-demanding and not yet particularly accurate.
View Article and Find Full Text PDFQuinones are highly reactive molecules that readily undergo either one- or two-electron reduction. One-electron reduction of quinones or their derivatives by enzymes such as cytochrome P450 reductase or other flavoproteins generates unstable semiquinones, which undergo redox cycling in the presence of molecular oxygen leading to the formation of highly reactive oxygen species. Quinone reductases 1 and 2 (QR1 and QR2) catalyze the two-electron reduction of quinones to form hydroquinones, which can be removed from the cell by conjugation of the hydroxyl with glucuronide or sulfate thus avoiding its autoxidation and the formation of free radicals and highly reactive oxygen species.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
November 2011
Glucokinase (GK) catalyses the formation of glucose 6-phosphate from glucose and ATP. A specific feature of GK amongst hexokinases is that it can cycle between active and inactive conformations as a function of glucose concentration, resulting in a unique positive kinetic cooperativity with glucose, which turns GK into a unique key sensor of glucose metabolism, notably in the pancreas. GK is a target of antidiabetic drugs aimed at the activation of GK activity, leading to insulin secretion.
View Article and Find Full Text PDFSlow conformational changes have been proposed to be responsible for the kinetic positive cooperativity of glucokinase (GK) with glucose. Induced-fit and preexisting equilibrium kinetic models have been previously suggested. In the present study, equilibrium and pre-steady-state fluorescence spectroscopy has been used to resolve those conflicting reports.
View Article and Find Full Text PDFThe methionine sulfoxide reductases (Msrs) are thioredoxin-dependent oxidoreductases that catalyse the reduction of the sulfoxide function of the oxidized methionine residues. These enzymes have been shown to regulate the life span of a wide range of microbial and animal species and to play the role of physiological virulence determinant of some bacterial pathogens. Two structurally unrelated classes of Msrs exist, MsrA and MsrB, with opposite stereoselectivity towards the R and S isomers of the sulfoxide function, respectively.
View Article and Find Full Text PDFMethionine sulfoxide reductases (Msrs) are ubiquitous enzymes that catalyze the thioredoxin-dependent reduction of methionine sulfoxide (MetSO) back to methionine. In vivo, Msrs are essential in protecting cells against oxidative damages on proteins and in the virulence of some bacteria. There exists two structurally unrelated classes of Msrs.
View Article and Find Full Text PDFMethionine sulfoxide reductases (Msr) reduce methionine sulfoxide (MetSO)-containing proteins, back to methionine (Met). MsrAs are stereospecific for the S epimer whereas MsrBs reduce the R epimer of MetSO. Although structurally unrelated, the Msrs characterized so far display a similar catalytic mechanism with formation of a sulfenic intermediate on the catalytic cysteine and a concomitant release of Met, followed by formation of at least one intramolecular disulfide bond (between the catalytic and a recycling cysteine), which is then reduced by thioredoxin.
View Article and Find Full Text PDFMethionine sulfoxide reductases (Msrs) are ubiquitous enzymes that reduce protein-bound methionine sulfoxide back to Met in the presence of thioredoxin. In vivo, the role of the Msrs is described as essential in protecting cells against oxidative damages and as playing a role in infection of cells by pathogenic bacteria. There exist two structurally unrelated classes of Msrs, called MsrA and MsrB, specific for the S and the R epimer of the sulfoxide function of methionine sulfoxide, respectively.
View Article and Find Full Text PDFBiochim Biophys Acta
January 2005
The methionine sulfoxide reductase (Msr) family is composed of two structurally unrelated classes of monomeric enzymes named MsrA and MsrB, which display opposite stereo-selectivities towards the sulfoxide function. MsrAs and MsrBs, characterized so far, share the same chemical mechanism implying sulfenic acid chemistry. The mechanism includes three steps with (1) formation of a sulfenic acid intermediate with a concomitant release of 1 mol of methionine per mol of enzyme; (2) formation of an intramonomeric disulfide Msr bond followed by; (3) reduction of the oxidized Msr by thioredoxin (Trx).
View Article and Find Full Text PDFOxidation of methionine into methionine sulfoxide is associated with many pathologies and is described to exert regulatory effects on protein functions. Two classes of methionine sulfoxide reductases, called MsrA and MsrB, have been described to reduce the S and the R isomers of the sulfoxide of methionine sulfoxide back to methionine, respectively. Although MsrAs and MsrBs display quite different x-ray structures, they share a similar, new catalytic mechanism that proceeds via the sulfenic acid chemistry and that includes at least three chemical steps with 1) the formation of a sulfenic acid intermediate and the concomitant release of methionine; 2) the formation of an intra-disulfide bond; and 3) the reduction of the disulfide bond by thioredoxin.
View Article and Find Full Text PDF