Quantum fluids of light merge many-body physics and nonlinear optics, revealing quantum hydrodynamic features of light when it propagates in nonlinear media. One of the most outstanding evidence of light behaving as an interacting fluid is its ability to carry itself as a superfluid. Here, we report a direct experimental detection of the transition to superfluidity in the flow of a fluid of light past an obstacle in a bulk nonlinear crystal.
View Article and Find Full Text PDFWe propose a setup that is the spin analog of the charge-based quantum RC circuit. We define and compute the spin capacitance and the spin resistance of the circuit for both ferromagnetic and antiferromagnetic systems. We find that the antiferromagnetic setup has universal properties, but the ferromagnetic setup does not.
View Article and Find Full Text PDFElectron transport in mesoscopic conductors has traditionally involved investigations of the mean current and the fluctuations of the current. A complementary view on charge transport is provided by the distribution of waiting times between charge carriers, but a proper theoretical framework for coherent electronic systems has so far been lacking. Here we develop a quantum theory of electron waiting times in mesoscopic conductors expressed by a compact determinant formula.
View Article and Find Full Text PDFThe distribution of waiting times between elementary tunneling events is of fundamental importance for understanding the stochastic charge transfer processes in nanoscale conductors. Here we investigate the waiting time distributions (WTDs) of periodically driven single-electron emitters and evaluate them for the specific example of a mesoscopic capacitor. We show that the WTDs provide a particularly informative characterization of periodically driven devices and we demonstrate how the WTDs allow us to reconstruct the full counting statistics (FCS) of charges that have been transferred after a large number of periods.
View Article and Find Full Text PDF