The advanced radiographic capability (ARC) laser system, part of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, is a short-pulse laser capability integrated into the NIF. The ARC is designed to provide adjustable pulse lengths of ∼1-38 in four independent beamlets, each with energies up to 1 kJ (depending on pulse duration). A detailed model of the ARC lasers has been developed that predicts the time- and space-resolved focal spots on target for each shot.
View Article and Find Full Text PDFVisible-infrared sum-frequency spectroscopy is ideally suited to the study of surfaces and interfaces. This paper introduces new sum-frequency spectroscopy instrumentation that we have developed with two novel features: (1) stable and robust infrared generation in the 900-3100 cm(-1) (11-3.2 microm) region using an amplified Ti : sapphire oscillator with a home-built OPG/OPA, and (2) continuous tuning over either 900-2700 cm(-1) (11-3.
View Article and Find Full Text PDFWe provide the first account of the second-order susceptibility of quartz down to 10 mum (1000 cm(-1)) and show how this data may be used along with the sum-frequency response of an amorphous gold surface to elucidate the nonlinear susceptibility of any material in the mid-infrared region. Crystalline quartz is an established material for use in second-harmonic and sum-frequency generation studies of new systems, on account of its well-characterized linear and nonlinear optical properties. Previous knowledge of its nonlinear susceptibility has been limited to its transparent region, wavelengths shorter than about 3 mum.
View Article and Find Full Text PDF