The seemingly simple step of molding a cholesteric liquid crystal into spherical shape, yielding a Cholesteric Spherical Reflector (CSR), has profound optical consequences that open a range of opportunities for potentially transformative technologies. The chiral Bragg diffraction resulting from the helical self-assembly of cholesterics becomes omnidirectional in CSRs. This turns them into selective retroreflectors that are exceptionally easy to distinguish-regardless of background-by simple and low-cost machine vision, while at the same time they can be made largely imperceptible to human vision.
View Article and Find Full Text PDFThe responsive and dynamic character of liquid crystals (LCs), arising from their ability to self-organize into long-range ordered structures while maintaining fluidity, has given them a role as key enabling materials in the information technology that surrounds us today. Ongoing research hints at future LC-based technologies of entirely different types, for instance by taking advantage of the peculiar behavior of cholesteric liquid crystals (CLCs) subject to curvature. Spherical shells of CLC reflect light omnidirectionally with specific polarization and wavelength, tunable from the UV to the infrared (IR) range, with complex patterns arising when many of them are brought together.
View Article and Find Full Text PDFThe conventional gait model (CGM) is a widely used biomechanical model which has been validated over many years. The CGM relies on retro-reflective markers placed along anatomical landmarks, a static calibration pose, and subject measurements as inputs for joint angle calculations. While past literature has shown the possible errors caused by improper marker placement, studies on the effects of inaccurate subject measurements are lacking.
View Article and Find Full Text PDFBackground: CT angiography is gaining broader acceptance in the evaluation of children with known or suspected congenital heart disease. These studies include non-cardiovascular structures such as the mediastinum, lung parenchyma and upper abdominal organs. It is important to inspect all these structures for potential abnormalities that might be clinically important and, in some cases, may impact care plans.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are important regulators of various cellular functions via activation of intracellular signaling events. Active GPCR signaling is shut down by GPCR kinases (GRKs) and subsequent β-arrestin-mediated mechanisms including phosphorylation, internalization, and either receptor degradation or resensitization. The seven-member GRK family varies in their structural composition, cellular localization, function, and mechanism of action (see sect.
View Article and Find Full Text PDF