Publications by authors named "Mathew M Maye"

In this work, we demonstrate a photoluminescence-based method to monitor the kinetics of an organohalide reaction by way of detecting released bromide ions at cesium lead halide nanoparticles. Small aliquots of the reaction are added to an assay with known concentrations of CsPbI, and the resulting Br-to-I halide exchange (HE) results in rapid and sensitive wavelength blueshifts (Δλ) due to CsPbBrI intermediate concentrations, the wavelengths of which are proportional to concentrations. An assay response factor, , relates Δλ to Br concentration as a function of CsPbI concentration.

View Article and Find Full Text PDF

This study describes an investigation of the role of non-polar solvents on the growth of cesium lead halide (CsPbX X = Br and I) nanoplatelets. We employed two solvents, benzyl ether (BE) and 1-octadecene (ODE), as well as two nucleation and growth mechanisms, one-pot, facilitated by microwave irradiation (MWI)-based heating, and hot-injection, using convection. Using BE and MWI, large mesoscale CsPbBr nanoplatelets were produced, whereas use of ODE produced small crystallites.

View Article and Find Full Text PDF

This report describes a characterization study of the surfaces of CsPbBr and CsPbBrI perovskite nanoparticles (NPs) obtained via a simultaneous purification and halide exchange (HE) postsynthetic processing technique. We studied composition-dependent NP-ligand interactions via diffusion ordered NMR (DOSY) and quantified resulting photoluminescence quantum yield (QY) as a function of halide exchange as well as ligand exchange. Importantly, ligand binding strength and QY were found to decrease when successive purification and/or halide/ligand exchange steps were taken without careful concurrent additions of acid and base ligands.

View Article and Find Full Text PDF

The ability of cesium lead halide (CsPbX3; X = Cl(-), Br(-), I(-)) perovskite nanoparticles (P-NPs) to participate in halide exchange reactions, to catalyze Finkelstein organohalide substitution reactions, and to colorimetrically monitor chemical reactions and detect anions in real time is described. With the use of tetraoctylammonium halide salts as a starting point, halide exchange with the P-NPs was performed to calibrate reactivity, stability, and extent of ion exchange. The exchange of CsPbI3 with Cl(-) or Br(-) causes a significant blue-shift in absorption and photoluminescence, whereas reacting I(-) with CsPbBr3 causes a red-shift of similar magnitudes.

View Article and Find Full Text PDF

We describe the necessary design criteria to create highly efficient energy transfer conjugates containing luciferase enzymes derived from Photinus pyralis (Ppy) and semiconductor quantum rods (QRs) with rod-in-rod (r/r) microstructure. By fine-tuning the synthetic conditions, CdSe/CdS r/r-QRs were prepared with two different emission colors and three different aspect ratios (l/w) each. These were hybridized with blue, green, and red emitting Ppy, leading to a number of new BRET nanoconjugates.

View Article and Find Full Text PDF

The synthesis, processing, and galvanic exchange of three heterostructured nanoparticle systems is described. The surface accessibility and redox potential of a Au/Pd-Ag dumbbell nanoparticle, where a Au/Pd core/shell region, and a silver region make up the domains, was used to prepare the new nanostructures with controlled composition, morphology, and microstructure. Results indicate that the silver domain was particularly susceptible to galvanic displacement, and was exchanged to Au/Pd-M (M = Au, Pd, Pt).

View Article and Find Full Text PDF

The DNA-mediated self-assembly of multicolor quantum dot (QD) clusters via a stepwise approach is described. The CdSe/ZnS QDs were synthesized and functionalized with an amphiphilic copolymer, followed by ssDNA conjugation. At each functionalization step, the QDs were purified via gradient ultracentrifugation, which was found to remove excess polymer and QD aggregates, allowing for improved conjugation yields and assembly reactivity.

View Article and Find Full Text PDF

The DNA-mediated self-assembly of CdSe/CdS quantum rods (QRs) onto DNA origami is described. Two QR types with unique optical emission and high polarization were synthesized, and then functionalized with oligonucleotides (ssDNA) using a novel protection-deprotection approach, which harnessed ssDNA's tailorable rigidity and denaturation temperature to increase DNA coverage by reducing non-specific coordination and wrapping. The QR assembly was programmable, and occurred at two different assembly zones that had capture strands in parallel alignment.

View Article and Find Full Text PDF

The bioluminescence resonance energy transfer (BRET) between firefly luciferase enzymes and semiconductive quantum dots (QDs) with near infrared emission is described. The QD were phase transferred to aqueous buffers using a histidine mediated phase transfer route, and incubated with a hexahistidine tagged, green emitting variant of firefly luciferase from Photinus pyralis (PPyGRTS). The PPyGRTS were bound to the QD interface via the hexahistidine tag, which effectively displaces the histidine layer and binds directly to the QD interfaces, allowing for short donor-acceptor distances (∼5.

View Article and Find Full Text PDF

The electrostatic assembly between a series of differently charged Mo-132-type Keplerates present in the compounds (NH4)42[{(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(CH3COO)}30].ca. {300 H2O+10 CH3COONH4} (Mo-132a), (NH4)72-n[{(H2O)81-n+(NH4)n} {(Mo(VI))Mo(VI)5O21(H2O)6}12 {Mo(V)2O4(SO4)}30].

View Article and Find Full Text PDF

In this report we describe the synthesis, characterization, and cytotoxic properties of DNA-capped gold nanoparticles having attached folic acid (FA), a thermoresponsive polymer (p), and/or poly(ethylene glycol) (PEG) oligomers that could be used to deliver the anticancer drug doxorubicin (DOX) in chemotherapy. The FA-DNA oligomer used in the construction of the delivery vehicle was synthesized through the reaction of the isolated folic acid N-hydroxysuccinimide ester with the amino-DNA and the conjugated DNA product was purified using high performance liquid chromatography (HPLC). This approach ultimately allowed control of the amount of FA attached to the surface of the delivery vehicle.

View Article and Find Full Text PDF

The surface plasmon resonance (SPR) properties of Au/Au(x)Ag(1-x) core/alloy nanoparticles (NPs) have been investigated by means of the discrete dipole approximation. The core/alloy microstructure was varied by changing the shell alloy composition x, its thickness t(S), and the shell thickness to core radius ratio (t(S)/r(C)) in the range of 0.05-1.

View Article and Find Full Text PDF

Photoinduced hole transfer from a CdSe/ZnS quantum dot to a conjugated polymer is tuned by varying the quantum dot core size. Hole transfer affects the photoluminescence blinking of the quantum dot, increasing the duration of the on-states and decreasing that of the off-states.

View Article and Find Full Text PDF

In this paper, we describe the use of a temperature responsive polymer to reversibly assemble gold nanoparticles of various sizes. Temperature responsive, low critical solution temperature (LCST) pNIPAAm-co-pAAm polymers, with transition temperatures (T(C)) of 51 and 65 °C, were synthesized with a thiol modification, and grafted to the surface of 11 and 51 nm gold nanoparticles (AuNPs). The thermal-responsive behavior of the polymer allowed for the reversible aggregation of the nanoparticles, where at T < T(C) the polymers were hydrophilic and extended between particles.

View Article and Find Full Text PDF

In this paper we describe the use of a temperature-responsive polymer to regulate DNA interactions in both a DNA-mediated assembly system and a DNA-encoded drug delivery system. A thermoresponsive pNIPAAm-co-pAAm polymer, with a transition temperature (TC) of 51 °C, was synthesized with thiol modification and grafted onto gold nanoparticles (Au NPs) also containing single-stranded oligonucleotides (ssDNA). The thermoresponsive behavior of the polymer regulated the accessibility of the sequence-specific hybridization between complementary DNA-functionalized Au NPs.

View Article and Find Full Text PDF

The oxidation properties of nanoparticles with core/alloy microstructure and stainless steel like interfaces is described. In particular, 15-nm Fe/FeCr nanoparticles with a stainless steel like interface are prepared. These particles show a unique morphological transformation that is induced by surface oxidation, oxide passivation, and vacancy coalescence.

View Article and Find Full Text PDF

Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated.

View Article and Find Full Text PDF

The resonance energy transfer between CdSe/ZnS quantum dots (qdots) and three metallic nanoparticles (NPs) with different surface plasmon resonance (SPR) characteristics were studied. Gold, gold/silver and gold/palladium NPs were used as energy acceptors for qdots with donor emission at 570 nm. Due to the different spectral overlaps between the SPR signatures and qdot emission, varied energy transfer characteristics were observed.

View Article and Find Full Text PDF

Oligonucleotide-functionalized gold nanoparticles (AuNP) were designed and synthesized to be delivery vehicles for the clinically used anticancer drugs doxorubicin (DOX) and actinomycin D (ActD). Each vehicle contains a tailorable number of DNA duplexes, each possessing three high-affinity sequences for the intercalation of either DOX or ActD, thus allowing for control of drug loading. Drug binding was evaluated by measuring changes to DNA melting temperature, T(m), hydrodynamic diameter, D(h), and surface plasmon resonance wavelength, λ(spr), with drug loading.

View Article and Find Full Text PDF

The alloy phase behavior of nanoparticle (NP) interfaces has been used to tailor asymmetric growth. Using either Au-Pd core-shell or Au-Au(x)Pd(1-x) core-alloy NP starting materials, the deposition of Ag resulted in asymmetric and symmetric growth respectively. The phase segregation of the interface was confirmed by TEM and electrocatalytic activity.

View Article and Find Full Text PDF

Photoinduced hole transfer is investigated in inorganic/organic hybrid nanocomposites of colloidal CdSe/ZnS quantum dots and a cationic conjugated polymer, poly(9,9'-bis(6-N,N,N-trimethylammoniumhexyl)fluorene-alt-phenylene, in solution and in solid thin film, and down to the single hybrid level and is assessed to be a dynamic quenching process. We demonstrate control of hole transfer rate in these quantum dot/conjugated polymer hybrids by using a series of core/shell quantum dots with varying shell thickness, for which a clear exponential dependency of the hole transfer rate vs shell thickness is observed, for both solution and thin-film situations. Furthermore, we observe an increase of hole-transfer rate from solution to film and correlate this with changes in quantum dot/polymer interfacial morphology affecting the hole transfer rate, namely, the donor-acceptor distance.

View Article and Find Full Text PDF

The bioluminescence resonance energy transfer (BRET) between firefly luciferase from Photinus pyralis (Ppy) with core/shell semiconductive quantum rods (QRs) has been studied as a function of QR aspect ratio and internal microstructure. The QRs were found to be ideal energy acceptors, and Ppy-to-core distances were optimized using rod-in-rod microstructures that were achieved by the synthetic control of rod morphology, surface chemistry, and Ppy:QR loading. The BRET ratios of >44 measured are the highest efficiencies to date.

View Article and Find Full Text PDF

The layer-by-layer processing of Au/Au(x)Pd(1-x) core/alloy nanoparticles via microwave irradiation (MWI) based hydrothermal heating is described. Alloy shell growth was monitored by the attenuation of surface plasmon resonance (SPR) as a function of shell thickness and composition. Discrete dipole approximation (DDA) correlated the SPR to particle morphology.

View Article and Find Full Text PDF

A novel hydrothermal layer-by-layer processing method for the fabrication of core/alloy nanoparticles with highly tunable surface plasmon resonance is described. For a model system of Au/Au(x)Ag(1-x), the processing temperature, alloy composition, and alloy thickness resulted in unique and tailorable plasmonic signatures. The discrete dipole approximation and selective alloy etching were used to correlate this optical response with the particle morphology and alloy phase ultrastructure.

View Article and Find Full Text PDF