Publications by authors named "Mathew Lewsey"

Article Synopsis
  • This research explores the connection between epigenomics and plant specialized metabolism, particularly in Cannabis sativa, which produces valuable cannabinoids and terpenoids.
  • The study mapped various histone modifications in cannabis trichomes and correlated these with gene expression data to identify regions associated with metabolite production and plant defense mechanisms.
  • Findings highlight specific chromatin marks linked to active transcription of metabolite biosynthetic genes, as well as potential enhancer elements, providing insights into how epigenomic regulation affects specialized metabolism in plants.
View Article and Find Full Text PDF

Background: Grains make up a large proportion of both human and animal diets. With threats to food production, such as climate change, growing sustainable and successful crops is essential to food security in the future. Germination is one of the most important stages in a plant's lifecycle and is key to the success of the resulting plant as the grain undergoes morphological changes and the development of specific organs.

View Article and Find Full Text PDF

Germination involves highly dynamic transcriptional programs as the cells of seeds reactivate and express the functions necessary for establishment in the environment. Individual cell types have distinct roles within the embryo, so must therefore have cell type-specific gene expression and gene regulatory networks. We can better understand how the functions of different cell types are established and contribute to the embryo by determining how cell type-specific transcription begins and changes through germination.

View Article and Find Full Text PDF

Cannabis sativa L. is one of the oldest domesticated crops. Hemp-type cultivars, which predominantly produce non-intoxicating cannabidiol (CBD), have been selected for their fast growth, seed, and fibre production, while drug-type chemovars were bred for high accumulation of tetrahydrocannabinol (THC).

View Article and Find Full Text PDF

Opium poppy is a crop of great commercial value as a source of several opium alkaloids for the pharmaceutical industries including morphine, codeine, thebaine, noscapine, and papaverine. Most enzymes involved in benzylisoquinoline alkaloid (BIA) biosynthesis in opium poppy have been functionally characterized, and opium poppy currently serves as a model system to study BIA metabolism in plants. BIA biosynthesis in opium poppy involves two biosynthetic gene clusters associated respectively with the morphine and noscapine branches.

View Article and Find Full Text PDF

Optimal stomatal regulation is important for plant adaptation to changing environmental conditions and for maintaining crop yield. The guard cell signal γ-aminobutyric acid (GABA) is produced from glutamate by glutamate decarboxylase (GAD) during a reaction that generates CO2 as a by-product. Here, we investigated a putative connection between GABA signalling and the more clearly defined CO2 signalling pathway in guard cells.

View Article and Find Full Text PDF

Background: Cancer cachexia is a severe metabolic syndrome marked by skeletal muscle atrophy. A successful clinical intervention for cancer cachexia is currently lacking. The study of cachexia mechanisms is largely based on preclinical animal models and the availability of high-throughput transcriptomic datasets of cachectic mouse muscles is increasing through the extensive use of next generation sequencing technologies.

View Article and Find Full Text PDF

Oat (Avena sativa) is a cereal crop whose grains are rich in (1,3;1,4)-β-D-glucan (mixed-linkage glucan or MLG), a soluble dietary fiber. In our study, we analyzed oat endosperm development in 2 Canadian varieties with differing MLG content and nutritional value. We confirmed that oat undergoes a nuclear type of endosperm development but with a shorter cellularization phase than barley (Hordeum vulgare).

View Article and Find Full Text PDF

The inference of gene regulatory networks can reveal molecular connections underlying biological processes and improve our understanding of complex biological phenomena in plants. Many previous network studies have inferred networks using only one type of omics data, such as transcriptomics. However, given more recent work applying multi-omics integration in plant biology, such as combining (phospho)proteomics with transcriptomics, it may be advantageous to integrate multiple omics data types into a comprehensive network prediction.

View Article and Find Full Text PDF

Seeds are a vital source of calories for humans and a unique stage in the life cycle of flowering plants. During seed germination, the embryo undergoes major developmental transitions to become a seedling. Studying gene expression in individual seed cell types has been challenging due to the lack of spatial information or low throughput of existing methods.

View Article and Find Full Text PDF

Cross-regulation between hormone signaling pathways is indispensable for plant growth and development. However, the molecular mechanisms by which multiple hormones interact and co-ordinate activity need to be understood. Here, we generated a cross-regulation network explaining how hormone signals are integrated from multiple pathways in etiolated Arabidopsis () seedlings.

View Article and Find Full Text PDF

Regulation of specialised metabolism genes is multilayered and complex, influenced by an array of genomic, epigenetic and epigenomic mechanisms. Here, we review the most recent knowledge in this field, drawing from discoveries in several plant species. Our aim is to improve understanding of how plant genome structure and function influence specialised metabolism.

View Article and Find Full Text PDF

In plant cells, mitochondria are ideally positioned to sense and balance changes in energy metabolism in response to changing environmental conditions. Retrograde signaling from mitochondria to the nucleus is crucial for adjusting the required transcriptional responses. We show that ANAC017, the master regulator of mitochondrial stress, directly recruits a signaling cascade involving the plant hormones ethylene and auxin as well as the MAP KINASE KINASE (MKK) 9-MAP KINASE (MPK) 3/6 pathway in Arabidopsis thaliana.

View Article and Find Full Text PDF

scCloudMine is a cloud-based application for visualization, comparison, and exploration of single-cell transcriptome data. It does not require an on-site, high-power computing server, installation, or associated expertise and expense. Users upload their own or publicly available scRNA-seq datasets after pre-processing for visualization using a web browser.

View Article and Find Full Text PDF

'Omics describes a broad collection of research tools and techniques that enable researchers to collect data about biological systems at a very large, or near-complete, scale. These include sequencing of individual and community genomes (genomics, metagenomics), characterization and quantification of gene expression (transcriptomics), metabolite abundance (metabolomics), protein content (proteomics) and phosphorylation (phospho-proteomics), amongst many others. Though initially exploited as tools for fundamental discovery, 'omics techniques are now used extensively in applied and translational research, for example in plant and animal breeding, biomarker development and drug discovery.

View Article and Find Full Text PDF

The individual tissues and cell types of plants each have characteristic properties that contribute to the function of the plant as a whole. These are reflected by unique patterns of gene expression, protein and metabolite content, which enable cell-type-specific patterns of growth, development and physiology. Gene regulatory networks act within the cell types to govern the production and activity of these components.

View Article and Find Full Text PDF

Our ability to interrogate and manipulate the genome far exceeds our capacity to measure the effects of genetic changes on plant traits. Much effort has been made recently by the plant science research community to address this imbalance. The responses of plants to environmental conditions can now be defined using a variety of imaging approaches.

View Article and Find Full Text PDF

Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and a versatile model system to study secondary metabolism. However, our knowledge of its genetic diversity is limited, restricting utilization of the available germplasm for research and crop improvement. We used genotyping-by-sequencing to investigate the extent of genetic diversity and population structure in a collection of poppy germplasm consisting of 91 accessions originating in 30 countries of Europe, North Africa, America, and Asia.

View Article and Find Full Text PDF

Acclimation of plants to adverse conditions requires the coordination of gene expression and signalling pathways between tissues and cell types. As the energy and carbon capturing organs, leaves are significantly affected by abiotic and biotic stresses. However, tissue- or cell type-specific analyses of stress responses have focussed on the Arabidopsis root.

View Article and Find Full Text PDF

Cannabis (Cannabis sativa L.) is one of the oldest cultivated plants purported to have unique medicinal properties. However, scientific research of cannabis has been restricted by the Single Convention on Narcotic Drugs of 1961, an international treaty that prohibits the production and supply of narcotic drugs except under license.

View Article and Find Full Text PDF

Soybean () is an important crop providing oil and protein for both human and animal consumption. Knowing which biological processes take place in specific tissues in a temporal manner will enable directed breeding or synthetic approaches to improve seed quantity and quality. We analyzed a genome-wide transcriptome dataset from embryo, endosperm, endothelium, epidermis, hilum, outer and inner integument and suspensor at the global, heart and cotyledon stages of soybean seed development.

View Article and Find Full Text PDF

The development of a complex multicellular organism is governed by distinct cell types that have different transcriptional profiles. To identify transcriptional regulatory networks that govern developmental processes it is necessary to measure the spatial and temporal gene expression profiles of these individual cell types. Therefore, insight into the spatio-temporal control of gene expression is essential to gain understanding of how biological and developmental processes are regulated.

View Article and Find Full Text PDF