Aurora B kinase (AURKB) inhibitors have been trialled in a range of different tumour types but are not approved for any indication. Expression of the human papilloma virus (HPV) oncogenes and loss of retinoblastoma (RB) protein function has been reported to increase sensitivity to AURKB inhibitors but the mechanism of their contribution to sensitivity is poorly understood. Two commonly reported outcomes of AURKB inhibition are polyploidy and senescence, although their relationship is unclear.
View Article and Find Full Text PDFTo maintain both mitochondrial quality and quantity, cells selectively remove damaged or excessive mitochondria through mitophagy, which is a specialised form of autophagy. Mitophagy is induced in response to diverse conditions, including hypoxia, cellular differentiation and mitochondrial damage. However, the mechanisms that govern the removal of specific dysfunctional mitochondria under steady-state conditions to fine-tune mitochondrial content are not well understood.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
September 2022
The affinity and thermodynamic parameters for the interactions of two naturally occurring neurotoxins, (+)-anatoxin-a and (-)-hosieine-A, with acetylcholine-binding protein were investigated using a fluorescence-quenching assay and isothermal titration calorimetry. The crystal structures of their complexes with acetylcholine-binding protein from Aplysia californica (AcAChBP) were determined and reveal details of molecular recognition in the orthosteric binding site. Comparisons treating AcAChBP as a surrogate for human α4β2 and α7 nicotinic acetylcholine receptors (nAChRs) suggest that the molecular features involved in ligand recognition and affinity for the protein targets are conserved.
View Article and Find Full Text PDFThe poor selectivity of standard cytotoxic chemotherapy regimens causes severe side-effects in patients and reduces the quality of life during treatment. Targeting cancer-specific vulnerabilities can improve response rates, increase overall survival and limit toxic side effects in patients. Oncogene-induced replication stress serves as a tumour specific vulnerability and rationale for the clinical development of inhibitors targeting the DNA damage response (DDR) kinases (CHK1, ATR, ATM and WEE1).
View Article and Find Full Text PDFNEDD8 is a ubiquitin-like modifier most well-studied for its role in activating the largest family of ubiquitin E3 ligases, the cullin-RING ligases (CRLs). While many non-cullin neddylation substrates have been proposed over the years, validation of true NEDD8 targets has been challenging, as overexpression of exogenous NEDD8 can trigger NEDD8 conjugation through the ubiquitylation machinery. Here, we developed a deconjugation-resistant form of NEDD8 to stabilize the neddylated form of cullins and other non-cullin substrates.
View Article and Find Full Text PDF2,2-Dimethyl-5-phenyl-1,1,3,3-tetrafluororocyclohexane has been prepared and characterised as an example of a facially polarised cyclohexane containing 1,3 related CF groups. The dipolar nature of the ring arises from the axial orientation of two of the C-F bonds pointing in the same direction, and set by the chair conformation of the cyclohexane. This electrostatic profile is revealed experimentally both in the solid-state (X-ray) packing of the rings and by solution (NMR) in different solvents.
View Article and Find Full Text PDFMethods Mol Biol
December 2017
During mitosis, multiple protein kinases transform the cytoskeleton and chromosomes into new and highly dynamic structures that mediate the faithful transmission of genetic information and cell division. However, the large number and strong conservation of mammalian kinases in general pose significant obstacles to interrogating them with small molecules, due to the difficulty in identifying and validating those which are truly selective. To overcome this problem, a steric complementation strategy has been developed, in which a bulky "gatekeeper" residue within the active site of the kinase of interest is replaced with a smaller amino acid, such as glycine or alanine.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2015
The cohesin complex links DNA molecules and plays key roles in the organization, expression, repair, and segregation of eukaryotic genomes. In vertebrates the Esco1 and Esco2 acetyltransferases both modify cohesin's Smc3 subunit to establish sister chromatid cohesion during S phase, but differ in their N-terminal domains and expression during development and across the cell cycle. Here we show that Esco1 and Esco2 also differ dramatically in their interaction with chromatin, as Esco1 is recruited by cohesin to over 11,000 sites, whereas Esco2 is infrequently enriched at REST/NRSF target genes.
View Article and Find Full Text PDFThe germinal center (GC) is a microanatomical compartment wherein high-affinity antibody-producing B cells are selectively expanded. B cells proliferate and mutate their antibody genes in the dark zone (DZ) of the GC and are then selected by T cells in the light zone (LZ) on the basis of affinity. Here, we show that T cell help regulates the speed of cell cycle phase transitions and DNA replication of GC B cells.
View Article and Find Full Text PDFAn intercentrosomal linker keeps a cell's two centrosomes joined together until it is dissolved at the onset of mitosis. A second connection keeps daughter centrioles engaged to their mothers until they lose their orthogonal arrangement at the end of mitosis. Centriole disengagement is required to license centrioles for duplication.
View Article and Find Full Text PDFMutations in KRAS are prevalent in human cancers and universally predictive of resistance to anticancer therapeutics. Although it is widely accepted that acquisition of an activating mutation endows RAS genes with functional autonomy, recent studies suggest that the wild-type forms of Ras may contribute to mutant Ras-driven tumorigenesis. Here, we show that downregulation of wild-type H-Ras or N-Ras in mutant K-Ras cancer cells leads to hyperactivation of the Erk/p90RSK and PI3K/Akt pathways and, consequently, the phosphorylation of Chk1 at an inhibitory site, Ser 280.
View Article and Find Full Text PDFThe ubiquitin-modification status of proteins in cells is highly dynamic and maintained by specific ligation machineries (E3 ligases) that tag proteins with ubiquitin or by deubiquitinating enzymes (DUBs) that remove the ubiquitin tag. The development of tools that offset this balance is critical in characterizing signaling pathways that utilize such ubiquitination switches. Herein, we generated a DUB-resistant ubiquitin mutant that is recalcitrant to cleavage by various families of DUBs both in vitro and in mammalian cells.
View Article and Find Full Text PDFDuring oncogenesis, cells acquire multiple genetic alterations that confer essential tumor-specific traits, including immortalization, escape from antimitogenic signaling, neovascularization, invasiveness, and metastatic potential. In most instances, these alterations are thought to arise incrementally over years, if not decades. However, recent progress in sequencing cancer genomes has begun to challenge this paradigm, because a radically different phenomenon, termed chromothripsis, has been suggested to cause complex intra- and interchromosomal rearrangements on short timescales.
View Article and Find Full Text PDFCell Mol Life Sci
December 2012
Translesion synthesis polymerases (TLS Pols) are required to tolerate DNA lesions that would otherwise cause replication arrest and cell death. Aberrant expression of these specialized Pols may be responsible for increased mutagenesis and loss of genome integrity in human cancers. The molecular events that control the usage of TLS Pols in non-pathological conditions remain largely unknown.
View Article and Find Full Text PDFTight regulation of the cell cycle and DNA repair machinery is essential for maintaining genome stability. The APC/CCdh1 ubiquitin ligase complex is a key regulator of protein stability during the G 1 phase of the cell cycle. APC/CCdh1 regulates and promotes the degradation of proteins involved in both cell cycle regulation and DNA repair.
View Article and Find Full Text PDFTargeted protein destruction of critical cellular regulators during the G1 phase of the cell cycle is achieved by anaphase-promoting complex/cyclosome(Cdh1) (APC/C(Cdh1)), a multisubunit E3 ubiquitin ligase. Cells lacking Cdh1 have been shown to accumulate deoxyribonucleic acid (DNA) damage, suggesting that it may play a previously unrecognized role in maintaining genomic stability. The ubiquitin-specific protease 1 (USP1) is a known critical regulator of DNA repair and genomic stability.
View Article and Find Full Text PDFCorepressors play a crucial role in negative gene regulation and are defective in several diseases. BCoR is a corepressor for the BCL6 repressor protein. Here we describe and functionally characterize BCoR-L1, a homolog of BCoR.
View Article and Find Full Text PDF