Despite strides in characterizing human history from genetic polymorphism data, progress in identifying genetic signatures of recent demography has been limited. Here we identify very recent fine-scale population structure in North America from a network of over 500 million genetic (identity-by-descent, IBD) connections among 770,000 genotyped individuals of US origin. We detect densely connected clusters within the network and annotate these clusters using a database of over 20 million genealogical records.
View Article and Find Full Text PDFBackground: Statins effectively lower total and plasma LDL-cholesterol, but the magnitude of decrease varies among individuals. To identify single nucleotide polymorphisms (SNPs) contributing to this variation, we performed a combined analysis of genome-wide association (GWA) results from three trials of statin efficacy.
Methods And Principal Findings: Bayesian and standard frequentist association analyses were performed on untreated and statin-mediated changes in LDL-cholesterol, total cholesterol, HDL-cholesterol, and triglyceride on a total of 3932 subjects using data from three studies: Cholesterol and Pharmacogenetics (40 mg/day simvastatin, 6 weeks), Pravastatin/Inflammation CRP Evaluation (40 mg/day pravastatin, 24 weeks), and Treating to New Targets (10 mg/day atorvastatin, 8 weeks).
Data from the Pharmacogenomics and Risk of Cardiovascular Disease (PARC) study and the Cardiovascular Health Study (CHS) provide independent and confirmatory evidence for association between common polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1 alpha and plasma C-reactive protein (CRP) concentration. Analyses with the use of imputation-based methods to combine genotype data from both studies and to test untyped SNPs from the HapMap database identified several SNPs within a 5 kb region of HNF1A intron 1 with the strongest evidence of association with CRP phenotype.
View Article and Find Full Text PDFThe purposes of this study were 1) to examine the performance of a new multimarker regression approach for model-free linkage analysis in comparison to a conventional multipoint approach, and 2) to determine the whether a conditioning strategy would improve the performance of the conventional multipoint method when applied to data from two interacting loci. Linkage analysis of the Kofendrerd Personality Disorder phenotype to chromosomes 1 and 3 was performed in three populations for all 100 replicates of the Genetic Analysis Workshop 14 simulated data. Three approaches were used: a conventional multipoint analysis using the Zlr statistic as calculated in the program ALLEGRO; a conditioning approach in which the per-family contribution on one chromosome was weighted according to evidence for linkage on the other chromosome; and a novel multimarker regression approach.
View Article and Find Full Text PDFWe address the analytical problem of evaluating the evidence for linkage at a test locus while taking into account the effect of a known linked disease locus. The method we propose is a multimarker regression approach that models the identity-by-descent states for affected sib-pairs at a series of linked markers in terms of the identity-by-descent state at the known disease locus. Our method allows analysis to be performed at a test location (or a series of locations) without the requirement that identity-by-descent be directly observed at either the test or the known conditioning locus.
View Article and Find Full Text PDFExisting standard methods of linkage analysis for quantitative phenotypes rest on the assumptions of either ordinary least squares (Haseman and Elston [1972] Behav. Genet. 2:3-19; Sham and Purcell [2001] Am.
View Article and Find Full Text PDF