Decision making frequently depends on monitoring the duration of sensory events. To determine whether, and how, the perception of elapsed time derives from the neuronal representation of the stimulus itself, we recorded and optogenetically modulated vibrissal somatosensory cortical activity as male rats judged vibration duration. Perceived duration was dilated by optogenetic excitation.
View Article and Find Full Text PDFSince the discovery 50 years ago of the precisely ordered representation of the whiskers in somatosensory cortex, the rodent tactile sensory system has been a fertile ground for the study of sensory processing. With the growing sophistication of touch-based behavioral paradigms, together with advances in neurophysiological methodology, a new approach is emerging. By posing increasingly complex perceptual and memory problems, in many cases analogous to human psychophysical tasks, investigators now explore the operations underlying rodent problem solving.
View Article and Find Full Text PDFTo assess the role of dorsolateral striatum (DLS) in time coding, we recorded neuronal activity in rats tasked with comparing the durations of two sequential vibrations. Bayesian decoding of population activity revealed a representation of the unfolding of the trial across time. However, further analyses demonstrated a distinction between the encoding of trial time and perceived time.
View Article and Find Full Text PDFRecent studies examine the behavioral capacities of rats and mice with and without visual input, and the neuronal mechanisms underlying such capacities. These animals are assumed to be functionally blind under red light, an assumption that might originate in the fact that they are dichromats who possess ultraviolet and green cones, but not red cones. But the inability to see red as a color does not necessarily rule out form vision based on red light absorption.
View Article and Find Full Text PDFThe connection between stimulus perception and time perception remains unknown. The present study combines human and rat psychophysics with sensory cortical neuronal firing to construct a computational model for the percept of elapsed time embedded within sense of touch. When subjects judged the duration of a vibration applied to the fingertip (human) or whiskers (rat), increasing stimulus intensity led to increasing perceived duration.
View Article and Find Full Text PDFAn animal's behavioral state is reflected in the dynamics of cortical population activity and its capacity to process sensory information. To better understand the relationship between behavioral states and information processing, mice are trained to detect varying amplitudes of whisker-deflection under two-photon calcium imaging. Layer 2/3 neurons in the vibrissal primary somatosensory cortex are imaged across different behavioral states, defined based on detection performance (low to high-state) and pupil diameter.
View Article and Find Full Text PDFIn December 2019, coronavirus disease 2019 (COVID-19) was discovered in Wuhan, Hubei province, from where it spread rapidly worldwide. COVID-19 characteristics (increased infectivity, rapid spread, and general population susceptibility) pose a great challenge to hospitals. Infectious disease, pulmonology, and intensive care units have been strengthened and expanded.
View Article and Find Full Text PDFWhite matter (WM) plasticity during adulthood is a recently described phenomenon by which experience can shape brain structure. It has been observed in humans using diffusion tensor imaging (DTI) and myelination has been suggested as a possible mechanism. Here, we set out to identify molecular and cellular changes associated with WM plasticity measured by DTI.
View Article and Find Full Text PDFIn natural environments, choices frequently must be made on the basis of complex and ambiguous streams of sensory input. There are advantages inherent to rapid decision making. Choices are better grounded, however, if information is acquired and accumulated over time.
View Article and Find Full Text PDFThe number of the distinct tactile percepts exceeds the number of receptor types in the skin, signifying that perception cannot be explained by a one-to-one mapping from a single receptor channel to a corresponding percept. The abundance of touch experiences results from multiplexing (the coexistence of multiple codes within a single channel, increasing the available information content of that channel) and from the mixture of receptor channels by divergence and convergence. When a neuronal representation emerges through the combination of receptor channels, perceptual uncertainty can occur-a perceptual judgment is affected by a stimulus feature that would be, ideally, excluded from the task.
View Article and Find Full Text PDFTactile working memory engages a broad network of cortical regions in primates. To assess whether the conclusions drawn from primates apply to rodents, we examined the vibrissal primary somatosensory cortex (vS1) and the prelimbic cortex (PL) in a delayed comparison task. Rats compared the speeds of two vibrissal vibrations, stimulus1 and stimulus2, separated by a delay of 2 s.
View Article and Find Full Text PDFRecent work demonstrated that when a rat palpates a surface to identify its texture, signals generated by whisker kinematics are integrated by the brain, one touch at a time, until the accumulated evidence supports a well-grounded choice. The framework of decision making through bounded integration, previously attributed to primates, thus extends to rodents. In the present study, we ask whether vibrissal somatosensory cortex (vS1 and vS2) functions as the integrator of incoming evidence or, alternatively, as a relay of evidence to a downstream integrator.
View Article and Find Full Text PDFBehaviors in which primates collect externally generated streams of sensory evidence, such as judgment of random dot motion direction, are explained by a bounded integration decision model. Does this model extend to rodents, and does it account for behavior in which the motor system generates evidence through interactions with the environment? In this study, rats palpated surfaces to identify the texture before them, showing marked trial-to-trial variability in the number of touches prior to expressing their choice. By high-speed video, we tracked whisker kinematic features and characterized how they encoded the contacted texture.
View Article and Find Full Text PDFVisualization and tracking of the facial whiskers is critical to many studies of rodent behavior. High-speed videography is the most robust methodology for characterizing whisker kinematics, but whisker visualization is challenging due to the low contrast of the whisker against its background. Recently, we showed that fluorescent dye(s) can be applied to enhance visualization and tracking of whisker(s) ( Rigosa , 2017 ), and this protocol provides additional details on the technique.
View Article and Find Full Text PDFMany models of cognition and of neural computations posit the use and estimation of prior stimulus statistics: it has long been known that working memory and perception are strongly impacted by previous sensory experience, even when that sensory history is not relevant to the current task at hand. Nevertheless, the neural mechanisms and regions of the brain that are necessary for computing and using such prior experience are unknown. Here we report that the posterior parietal cortex (PPC) is a critical locus for the representation and use of prior stimulus information.
View Article and Find Full Text PDFTo better understand how object recognition can be triggered independently of the sensory channel through which information is acquired, we devised a task in which rats judged the orientation of a raised, black and white grating. They learned to recognize two categories of orientation: 0° ± 45° ("horizontal") and 90° ± 45° ("vertical"). Each trial required a visual (V), a tactile (T), or a visual-tactile (VT) discrimination; VT performance was better than that predicted by optimal linear combination of V and T signals, indicating synergy between sensory channels.
View Article and Find Full Text PDFVisualization and tracking of the facial whiskers is required in an increasing number of rodent studies. Although many approaches have been employed, only high-speed videography has proven adequate for measuring whisker motion and deformation during interaction with an object. However, whisker visualization and tracking is challenging for multiple reasons, primary among them the low contrast of the whisker against its background.
View Article and Find Full Text PDFTo better understand how a stream of sensory data is transformed into a percept, we examined neuronal activity in vibrissal sensory cortex, vS1, together with vibrissal motor cortex, vM1 (a frontal cortex target of vS1), while rats compared the intensity of two vibrations separated by an interstimulus delay. Vibrations were "noisy," constructed by stringing together over time a sequence of velocity values sampled from a normal distribution; each vibration's mean speed was proportional to the width of the normal distribution. Durations of both stimulus 1 and stimulus 2 could vary from 100 to 600 ms.
View Article and Find Full Text PDFUnlabelled: Operating with some finite quantity of processing resources, an animal would benefit from prioritizing the sensory modality expected to provide key information in a particular context. The present study investigated whether rats dedicate attentional resources to the sensory modality in which a near-threshold event is more likely to occur. We manipulated attention by controlling the likelihood with which a stimulus was presented from one of two modalities.
View Article and Find Full Text PDFRhythms with time scales of multiple cycles per second permeate the mammalian brain, yet neuroscientists are not certain of their functional roles. One leading idea is that coherent oscillation between two brain regions facilitates the exchange of information between them. In rats, the hippocampus and the vibrissal sensorimotor system both are characterized by rhythmic oscillation in the theta range, 5-12 Hz.
View Article and Find Full Text PDFWhen a neuron responds to a sensory stimulus, two fundamental codes [1-6] may transmit the information specifying stimulus identity--spike rate (the total number of spikes in the sequence, normalized by time) and spike timing (the detailed millisecond-scale temporal structure of the response). To assess the functional significance of these codes, we recorded neuronal responses in primary (S1) and secondary (S2) somatosensory cortex of five rats as they used their whiskers to identify textured surfaces. From the spike trains evoked during whisker contact with the texture, we computed the information that rate and timing codes carried about texture identity and about the rat's choice.
View Article and Find Full Text PDFWe present a new method to assess the information carried by temporal patterns in spike trains. The method first performs a wavelet decomposition of the spike trains, then uses Shannon information to select a subset of coefficients carrying information, and finally assesses timing information in terms of decoding performance: the ability to identify the presented stimuli from spike train patterns. We show that the method allows: 1) a robust assessment of the information carried by spike time patterns even when this is distributed across multiple time scales and time points; 2) an effective denoising of the raster plots that improves the estimate of stimulus tuning of spike trains; and 3) an assessment of the information carried by temporally coordinated spikes across neurons.
View Article and Find Full Text PDF