Publications by authors named "Mathew E Brevard"

Recreational use of 3,4-methylenedioxymethamphetamine (MDMA;"ecstasy") poses worldwide potential health problems. Clinical studies show that repeated exposure to low oral doses of MDMA has toxic effects on the brain, altering cognitive and psychosocial behavior. Functional magnetic resonance imaging in conscious marmoset monkeys was used to evaluate the sensitivity of the brain to an oral dose of MDMA (1 mg/kg).

View Article and Find Full Text PDF

Purpose: Functional imaging of animal models makes it possible to map the functional neuroanatomy contributing to the genesis of seizures. Pentylenetetrazol (PTZ)-induced seizure in rats, a relevant model of human absence and of generalized tonic-clonic epilepsy, was used to stimulate seizure activity within 30 s of administration while collecting continuous, high-resolution, multislice images at subsecond intervals.

Methods: Pilot studies were conducted to establish a quick and effective PTZ model for the imaging experiments.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) in conscious animals is evolving as a critical tool for neuroscientists. The present study explored the effectiveness of an acclimation procedure in minimizing the stress experienced by the animal as assessed by alterations in physiological parameters including heart rate, respiratory rate, and serum corticosterone levels. Results confirm that as the stress of the protocol is minimized, there is a significant decrease in head movements and enhancement in data quality.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) was used to assess the effects of cocaine on brain activation in fully conscious rats. Methods were developed to image cocaine-induced changes in blood-oxygen-level-dependent (BOLD) signal without the peripheral cardiac and respiratory complications associated with psychostimulant administration. Using spin echo planar imaging (EPI), conscious rats were imaged in a 4.

View Article and Find Full Text PDF

Anesthetics, widely used in magnetic resonance imaging (MRI) studies to avoid movement artifacts, could have profound effects on cerebral blood flow (CBF) and cerebrovascular coupling relative to the awake condition. Quantitative CBF and tissue oxygenation (blood oxygen level-dependent [BOLD]) were measured, using the continuous arterial-spin-labeling technique with echo-planar-imaging acquisition, in awake and anesthetized (2% isoflurane) rats under basal and hypercapnic conditions. All basal blood gases were within physiologic ranges.

View Article and Find Full Text PDF